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ABSTRACT

The MicroBooNE Search For Anomalous Electron
Neutrino Appearance Using Image Based Data

Reconstruction

Victor Genty

This thesis presents the MicroBooNE search for the MiniBooNE low energy excess using

a fully automated image based data reconstruction scheme. A suite of traditional and

deep learning computer vision algorithms are developed for identification of charge current

quasi-elastic (CCQE) like muon and electron neutrino interactions using the MicroBooNE

detector. Given a model of the MiniBooNE low energy excess as due to an enhancement of

electron neutrino type events, this analysis predicts a combined statistical and systematic

3.8σ low energy signal in 13.2× 1020 POT of MicroBooNE data. When interpreted in the

context of νµ → νe 3 + 1 sterile neutrino oscillations a best fit point of (∆m2
41, sin

2 2θeµ) =

(0.063, 0.794) is found with a 90% confidence allowed region consistent with > 0.1 eV2

oscillations.
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Chapter 1

Introduction

This thesis describes the first automated search for the electron like low energy excess us-

ing image based reconstruction techniques in MicroBooNE. The MicroBooNE experiment

is a large Liquid Argon Time Project Chamber (LArTPC) designed for precision mea-

surements of short baseline accelerator neutrinos based at Fermilab National Accelerator

Laboratory (Fermilab). LArTPCs are capable of producing high resolution images of par-

ticle interactions with excellent particle identification and energy reconstruction ability. A

fully automated reconstruction chain based on computer vision techniques is developed and

applied to MicroBooNE data represented as 2D images. The reconstruction chain combines

traditional and deep learning techniques to probe the MiniBooNE electron-like low energy

excess. Deep learning techniques for image classification, detection, and semantic segmen-

tation have been successfully applied to LArTPC images for neutrino feature extraction

and are the subject of two papers for which the author was a primary contributor [7] [8].

The excess is explored through a charge current quasi-elastic (CCQE) like topology featur-

ing one lepton and one proton in the final state. The reconstruction and analysis chain is

benchmarked on the Run 1 MicroBooNE data set equivalent to 5× 1019 protons on target

(POT) from MicroBooNE’s first period of data taking and represents about 4% of expected

first result data set of 13.2 × 1020 POT. The sensitivity to a low energy excess signal is

extrapolated to the full 13.2×1020 POT MicroBooNE dataset and explored in the context

of a 3 + 1 sterile neutrino model.
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1.1 Overview of Issues Associated with Data Reconstruction

in MicroBooNE

This work presents an automated data reconstruction scheme for electron and muon type

neutrino events in a large liquid argon detector called MicroBooNE. MicroBooNE was com-

missioned and began data taking in late 2015 and is on track to collect 13.2×1020 protons

on target by the end of Summer 2019. The analysis scheme described in this thesis is a new

and independent approach to LArTPC data reconstruction based on computer vision and is

an alternative approach to the traditional Pandora-based method [9]. This reconstruction

paradigm considers individual charge deposition in wire and time space as atomic units

for pattern recognition providing absolute granularity for neutrino identification. Data are

represented in the form of 2D dimensional images and a suite of algorithms are described.

Reconstruction and analysis of MicroBooNE data is challenging due to detector effects, the

cosmogenic background rate, and the nature of low energy neutrino interactions. An event

display of a MicroBooNE data event is shown in Fig. 1.1 and features an automatically

reconstructed candidate CCQE interaction along with typical image features coming from

cosmic ray and detector effects.

First, due to the millisecond drift time of the time projection chamber (TPC) readout

coupled with MicroBooNE’s location on the Earth’s surface, an appreciable rate of cosmic

ray muons occur in time with the neutrino interaction. In each beam triggered event tens or

more cosmic ray particles traverse the detector producing both track and electromagnetic

shower characteristics which can occlude neutrino interactions. The presence of cosmic ray

tracks challenges automatic algorithms for reconstructing the neutrino features among an

array of cosmic rays. Additionally, cosmic ray muons can fake electron neutrino interactions

by decaying to a Michel electron.

Second, detector effects associated with the TPC and optical (PMT) systems can in-

terfere with and introduce noise into the event image [10][11]. An important issue facing

TPC based reconstruction algorithms is the presence of inactive or mis-configured wires on

the three TPC planes. Wires which are inactive do not collect ionization signal and are

interspersed throughout the three planes and cover approximately 10% of the TPC. Wire
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noise associated with the TPC electronics and wires themselves are a source detector noise

which manifests in the event as spurious charge deposition. Due its proximity to the TPC

wire planes, the PMT systems is also capable or producing spurious ionization signal. Algo-

rithms for automatic pattern recognition of neutrino events rely heavily on simulated data

for development and parameter optimization, therefore an accurate simulation is needed to

understand the precise impact on the analysis.

A subset of the challenges related to electron neutrino reconstruction in MicroBooNE

are shown in Fig. 1.1.

Candidate CCQE with 1 outgoing 
electron and 1 outgoing proton

Wire Noise

High cosmic  
ray rate

Dead Wires

Other Bkg.

PMT Noise

50
 c

m

50 cm

MicroBooNE Data 
(5516, 6, 342)

Figure 1.1: MicroBooNE data event display featuring a candidate CCQE interaction with

one lepton and one proton in the final state. Examples of cosmogenic backgrounds and

detector effects such as TPC and PMT noise and the presence of dead wires complicate

automated reconstruction of neutrino interactions.
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The reconstruction strategy employed by this thesis targets a specific charge current

quasi-elastic (CCQE) topology and does not provide generic pattern reconstruction for

all types of neutrino scattering topologies as in the Pandora based approach. Accurate

identification of hundreds of MeV electron neutrino interactions, as shown in Fig. 1.1, is

challenged due to the spatial scale of the interaction with respect to other backgrounds. In

addition, the topological features of the daughter particles must be extracted with detail

for accurate particle identification. This image based reconstruction scheme locates the 3D

scattering point of CCQE-like neutrinos, then extracts features of the final state particles

for neutrino flavor and momentum estimation. Stringent cuts are placed on the daughter

particle features to reduce the false positive rate of reconstructing background events for

low energy excess and 3+1 sterile oscillations searches.

1.2 Outline of Thesis

The work in this thesis is as follows. Chapter 2 provides an overview of neutrino inter-

actions and neutrino oscillations including a discussion of oscillations in the context of 1

additional sterile neutrino. Next, Chapter 3 describes the MicroBooNE detector and the

operating principle of the TPC, and the PMT optical systems. The Booster Neutrino Beam

is detailed in Chapter 4 as the source of on-axis accelerator neutrinos for MicroBooNE. In

Chapter 5 and Chapter 6 the low energy excess is discussed in the context of the LSND,

MiniBooNE, and MicroBooNE short baseline experimental experiments. A review of the

low energy excess observations in LSND and MiniBooNE experiments is presented. Next,

the MiniBooNE νe CCQE data is unfolded to estimate the low energy excess spectra at

MicroBooNE. Chapter 7 describes the final state topology selected to probe the low energy

excess signal in MicroBooNE. Additionally, the event rate expectation for the low energy

excess is characterized. Next, Chapter 8 provides an exhaustive presentation of the image

based reconstruction software developed to reconstruct muon and electron neutrino inter-

actions in MicroBooNE data. For readability, the author suggests reading the dedicated

summary section provided in Section 8.2 and refer to the chapter contents if interested in

the details. Muon and electron neutrino interactions are isolated using 2D and 3D features
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derived from image based reconstruction in Chapter 9 and compared to the Run 1 Micro-

BooNE data. A discussion of systematic errors in the context of the low energy excess

search along with the νµ constraint is presented in Chapter 10. MicroBooNE’s ability to

distinguish a MiniBooNE like low energy excess signal is described in Chapter 11 along with

the experimental sensitivity to 3 + 1 sterile neutrino oscillations. Finally, a summary of the

results from the thesis are summarized in the concluding chapter, Chapter 12.
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Chapter 2

Neutrino Physics and Oscillations

This chapter reviews the physics of neutrino particles and the role they play in the Standard

Model of physics. A survey of neutrino physics is described along with a detailed discussion

of neutrino oscillations. Finally, an overview of 3+1 sterile neutrino oscillations is presented.

2.1 Introduction to Neutrinos

The standard model of electro-weak interactions includes three active neutrino flavors ac-

companying the charged leptons electron, muon, and tau. Neutrinos are part of left handed

doublets under SU(2),

νLl =


νl
l



L

, (2.1)

where l = e, µ, τ . Two gauge bosons are predicted by the electro-weak theory, W± and Z0,

as well as SU(2) and U(1) gauge coupling constants, g and g′. The charged leptons and

quarks are coupled to neutrinos through charge current interactions mediated by the W

boson given by the Lagrangian,

LCC = − g

2
√

2

∑

l

W+
µ ν̄Llγ

µ(1− γ5)l−L + h.c. (2.2)

Neutrinos can also interact weakly via neutral current interactions mediated by the Z0

boson. At present the measurement of the Z0 boson decay constrains the active number of

left handed neutrinos to 2.991±0.007 [6]. In the Standard Model neutrinos have zero mass
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and carry a lepton quantum number. First postulated in 1930 by Pauli, and later observed

by Reines and Cowan in 1956, the neutrino has been probed extensively by a variety of

experiments around the globe. With the advent of clear evidence for neutrino oscillations

in 2001 by the SNO collaboration, theoretical and experimental activity in neutrino physics

remains strong into the 21st century.

2.2 Neutrino Oscillations

Observational evidence of neutrino oscillations requires that the active flavor states, charged

under the weak interaction, are not the same as neutrino mass eigenstates. The eigenstates

are related by a unitary mixing matrix,

να =
∑

Uαiνi, (2.3)

where α = e, µ, τ are called the flavor eigenstates, and i = 1, 2, 3 are called the mass

eigenstates. The matrix U is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.

Neutrino mass eigenstates are eigenstates of the free-particle Hamiltonian,

|νi〉 = e−ipix |νi〉 , (2.4)

where E2
i = m2

i + |~p|2. Consider two neutrino mixing with an angle θ,

U =


 cos θ sin θ

− sin θ cos θ


 . (2.5)

Then the flavor eigenstates |να〉 and |νβ〉 can be expressed as a function of position and

time as,

|να(t, ~x)〉 = cos θe−ip1t |ν1〉+ sin θe−ip2t |ν2〉 (2.6)

|νβ(t, ~x)〉 = − sin θe−ip1t |ν1〉+ cos θe−ip2t |ν2〉 . (2.7)

In the ultra-relativistic limit, t ∼ L the distance travelled by the neutrino and Ei − pz,i ≈
m2
i /2Ei. Then the probability for |να〉 to |νβ〉 transitions is given by,

Pα→β(L) = | 〈νβ|να(t, z = L)〉 |2 (2.8)

= sin2 2θ sin2

(
1.27

∆m2L

Eν

)
. (2.9)
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In this equation E is the neutrino energy, L is the distance from the source, and ∆m2 =

|m2
2−m2

1| is the magnitude difference between the |ν1〉 and |ν2〉 mass eigenstates. The result

predicts that a pure flavor eigenstate created via weak decay can oscillate into other flavors

by spatial propagation. Three neutrino mixing is an extension of two neutrino mixing and

is specified by three rotation angles θ23, θ13, and θ12 (0 ≤ θi ≤ π/2) and three CP-violating

phases δ, φ2, and φ3. The three neutrino mixing matrix can be written as,

U =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1







1 0 0

0 eiφ2/2 0

0 0 eiφ3/2


 , (2.10)

here cjk denotes cos θjk and sjk denotes sin θjk. The angle θ23 is relevant for oscillations of

atmospherics neutrinos, the angle θ12 describes solar neutrino oscillations, and the angle θ13

is measured by reactor neutrino experiments at short baselines. The two Majorana phases

φ2 and φ3 do not effect the oscillations probabilities. An ambiguity in mass ordering of the

neutrino mass eigenstates arises from the unknown sign of ∆m2
23. If ν1 happens to be the

lightest neutrino eigenstate, the ordering is called “normal” (m1 < m2 < m3), otherwise

is labelled as “inverted” (m3 < m1 < m2). An diagram of the mass splitting is shown in

Fig. 2.1.

Neutrino experiments are designed to search for neutrino oscillations via neutrino ap-

pearance or disappearance. In appearance experiments the neutrinos of known flavor α are

produced and measured a distance away from the source as another flavor β. In disap-

pearance searches neutrinos of a given flavor are produced and the same neutrino flavor is

measured. A given experiment optimizes the distance between the source and detector, L,

with the given neutrino energy, E, for maximal sensitivity to a given type of oscillations. A

table of the current oscillation parameters [6] is given in Table 2.1 for the normal hierarchy.

2.3 Sterile Neutrinos

Recent experiments performed at short baseline facilities, LSND and MiniBooNE, have

observed apparent excess of electron type neutrinos in primarily muon neutrino beams.

These experiments, described in Chapter 5, have measured signals consistent with two
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(m3)2

(m2)2

(m1)2 (m3)2

(m2)2

(m1)2

Δm223

Δm212

Δm2light

Normal Hierarchy Inverted Hierarchy

m2 (eV2)

ν3

ν2

ν1

ν1

ν2

ν3

Δm213

Δm212

Δm2light

νe νµ ντ

Figure 2.1: Three neutrino mass spectrum for normal (left) and inverted (right) hierarchy.

The lepton content of each mass eigenstate is denoted in color and represents the level of

mixing with each weak eigenstate.

Parameter Value (Normal Order)

sin2 θ12 0.307± 0.014

sin2 θ23 0.417± 0.028

sin2 θ13 (2.12± 0.08)× 10−2

∆m2
21 (7.53± 0.18)× 10−5 eV2

∆m2
32 (2.51± 0.05)× 10−3 eV2

Table 2.1: Neutrino oscillation parameters as of 2018 provided by the Particle Data Group)

[6].

neutrino oscillations at ∆m2 ≥ 0.1 eV2, inconsistent with the mass splitting for solar and

atmospheric oscillations. Introducing the LSND and MiniBooNE signals into the three

neutrino paradigm, such as via atmospheric mixing of high and low ∆m2 values, yields

global fits which are inconsistent with data [12]. The simplest extension to the three neutrino
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model is the addition of a single sterile neutrino, s, which mixes with the three active flavors

but is unable to interact weakly. The mixing matrix with one additional flavor state is,

U3+1 =




Ue1 Ue2 Ue3 Ue4
...

... Uµ4

...
... Uτ4

Us1 Us2 Us3 Us4



. (2.11)

The mass splitting with an additional sterile state is shown in Fig. 2.2 and is called the

3 + 1 model.

(m2)2

(m1)2

(m3)2

(m4)2

Δm2light

Δm2LSND

Δm223

Δm212

m2 (eV2)

ν1

ν2

ν3

ν4

νe
νµ
ντ
νs

Figure 2.2: Illustration of three neutrino mass states and their relationship with the fourth

sterile neutrino mass splitting.

Additional sterile neutrino states have important consequences outside of oscillation

experiments. Precise measurements of the Z boson constrain the number of active neutrino

flavors and hence an additional neutrino state must be “sterile” under the weak interaction.

An additional sterile state has cosmological ramifications as well, which at the time of

writing are not precise enough to make a statement. While sterile neutrinos may not

interact weakly, they could interact through a new force of nature weaker than the weak-

interaction scale making cosmological measurements insensitive to a sterile signal. Finally,
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the sterile neutrino state will distort the beta decay spectrum and new experiments are

coming online to address this. This thesis explores the appearance of electron neutrinos in

a primarily muon neutrino beam at a the Fermilab short baseline facility.
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Chapter 3

The MicroBooNE Detector

This chapter describes the MicroBooNE detector located at Fermilab National Accelerator

Laboratory. MicroBooNE is the first large scale liquid argon time projection chamber

(LArTPC) exposed to a high intensity neutrino beam in the United States. LArTPCs

combine high spatial resolution with total calorimetry for particle identification using liquid

argon as a detection medium. The MicroBooNE detector consists of a time projection

chamber (TPC), a PMT optical system, and an external cosmic ray tagging device. The

TPC system features three wire planes readout of ionization of charged particles traversing

the detector enabling 3D position reconstruction. The PMT system collects scintillation

light produced by argon and is used for beam triggering and particle reconstruction. The

external cosmic ray tagging system features an array of scintillator panels surrounding the

detector and is not described here. MicroBooNE began operations in late 2015 and has

since been taking neutrino mode beam data to address short baseline neutrino oscillations

and test the nature of the MiniBooNE low energy excess.

3.1 Introduction

The Micro-Booster Neutrino Experiment (MicroBooNE) is a liquid argon time projection

chamber (LArTPC) with an active mass of 90 tons located in Batavia, Illinois at the Fermi-

lab National Accelerator Laboratory (FNAL). The detector is located at the Liquid Argon

Test Facility (LArTF) on axis to the Booster Neutrino Beam (BNB), 470 m downstream
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from the proton target. An arial diagram of the experimental site is shown in Fig. 3.1

Figure 1. Aerial diagram showing location of MicroBooNE along the BNB (orange dashed line) at
Fermilab.

2 Experiment Overview

The MicroBooNE detector at Fermilab in Batavia, Illinois is sited in the Liquid Argon Test
Facility (LArTF) on axis in the BNB, 470 m downstream from the neutrino production
target. The BNB delivers a beam of predominantly muon neutrinos produced primarily
from pion decays, with energies peaking at 700 MeV [13]. MicroBooNE is also exposed to
an off-axis component of the NuMI beam [14] produced from pion and kaon decays with
average neutrino energies of about 0.25 GeV and 2 GeV respectively. MicroBooNE is located
about 600 m downstream from the NuMI neutrino production target. The characteristics of
the BNB beamline are well measured and understood from many years of data taking and
analysis from the MiniBooNE experiment [13], which operated directly downstream of the
MicroBooNE location. Figure 1 shows the arrangement of MicroBooNE with respect to the
BNB beamline at Fermilab. The physics program of MicroBooNE will utilize both BNB and
NuMI samples. MicroBooNE will also collect data that is out-of-time with either beam,
which will be useful for developing non-accelerator neutrino-based analyses (e.g. proton
decay and supernovae burst neutrino searches) relevant for next-generation detectors.

2.1 The MicroBooNE LArTPC

Charged particles traversing a volume of liquid argon leave trails of ionization electrons in
their wake and also create prompt vacuum ultraviolet (VUV) scintillation photons. In a
LArTPC, the liquid argon is highly purified so that the ionization trails can be transported
with minimal attenuation over distances of the order of meters [15] under the influence of a
uniform electric field in the detector volume, until they reach sense planes located along one
side of the active volume. The electric field is created by introducing voltage onto a cathode
plane and gradually stepping that voltage down in magnitude across a field cage, which is
formed from a series of equipotential rings surrounding the drift volume. Non-uniformities
in the electric field, diffusion, recombination, and space charge effects modify the tracks as
they are transported. Calibration of these effects is critical to reconstruction of the initial
ionization trails.

– 4 –

MicroBooNEMiniBooNE

Wilson Hall

Booster Ring

BNB 
Target

Figure 3.1: Overview of the Fermilab experimental site showing the location of MicroBooNE

along the BNB beam line.

The detector operates within a cryogenic vessel which houses the TPC and optical

systems. A detector schematic is shown in Fig. 3.2. The operating principle of a LArTPC

detector involves a homogenous volume of liquid argon exposed to an external electric field.

Particles traversing the detector volume produce scintillation light and ionize argon atoms

leaving a trail of ionization electrons. The electrons drift in the electric field to a set of

electrically charged sense wires where the ionization electrons are recorded as a function of

time. The result is a high resolution image of charged particle trajectories.

3.2 Time Projection Chamber

The MicroBooNE Time Projection Chamber (TPC) drifts and collects ionization electrons

produced by charged particles traversing the detector. The TPC is composed of three

components: the cathode, anode, and field cage and are shown in Fig. 3.3.

The cathode plane is a stainless steel sheet held at an electric potential of -70 kV. A

uniform 273 V/cm electric field between the cathode and anode planes is established inside

the field cage. The field cage consists of stainless steel tubes connected via a resistor chain

which steps down the voltage toward the anode. The anode plane houses three planes

of gold-plated copper sense-wires, separated by 3 mm, and oriented at 60 degrees with
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Figure 3. Schematic of the cross section of the MicroBooNE LArTPC. In this view, the beam would
be directed out of the page (in the z direction).

Table 2. Primary detector design parameters for MicroBooNE.
Parameter Value
LArTPC Dimensions 2.325 m vertically
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Total Number of Wires 8256
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Light collection 32 200 mm (8 in) diameter PMTs

4 lightguide paddles
Total liquid argon mass 170 tonnes
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Operating pressure 1.24 bar
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Figure 8.1 The TPC inside the cryostat looking up the beamline from the downstream side. The cathode plane 
is on the right (beam-left).  The wire planes and PMT array are on the left (beam-right).  The TPC HV 
feedthrough is top-right (beam-left), and the TPC signal feedthroughs are shown top-left (beam-right). 

 

A (2.33 m height)×(2.56 m width)×(10.37 m length) rectangular solid defines the 61.8 m3 active 
volume of the TPC, which encompasses 86 tons of liquid argon when operational.  The TPC 
cathode plane forms the vertical boundary of the active volume on the left side of the detector 
when viewed along the neutrino beam direction (“beam-left”). Three parallel vertical sense wire 
planes are mounted on the “beam-right” side of the active volume.  The wires in the “Y” plane 
are oriented vertically, while wires in the “U” and “V” planes are oriented ±60 degrees, 
respectively, with respect to vertical.  Ionization electrons drift from beam-left to beam-right, 
reaching in turn the U, V, and Y planes.  The drifting electrons induce charge on the U and V 
induction plane sense wires as they drift by and deposit their negative charge on the Y collection 
plane sense wires.   

The TPC HVFT occupies a position near the beam-left downstream top corner of the TPC.  The 
TPC signal feedthroughs line up along the top beam-right boundary of the TPC. 

Figure 9. Schematic diagram of the MicroBooNE LArTPC , depicted as it is arranged inside the
cryostat.

4.1 Cathode

The cathode is assembled from 9 individual stainless steel sheets (Type 304, 2.3 mm thick)
that are fastened to a supporting frame by hex-head stainless-steel button-screws. The outer
edge of the cathode frame consists of round stainless steel tubes of 5.08 cm outer diameter
and 3.18 mm wall thickness. Within this outer edge, square tubes with 5.08 cm ⇥ 5.08
cm cross-sectional area, and 3.18 mm wall thickness, are fastened together with hex-head
button-screws, forming a support structure upon which the cathode sheets are attached.
The individual components of the support structure are further welded together to eliminate
sharp features from this high-potential surface. The exterior frame and support structure of
the cathode, and also an interior view, are shown in figure 10. The cathode plane sheets are
shimmed according to survey data to make the cathode as flat and as parallel to the anode
frame as possible, resulting in the two surfaces being parallel to within 0.0413�. Flatness of
the cathode is evaluated relative to a best fit plane of survey data (more than 10000 survey
points recorded with a laser tracker). The largest deviations of the cathode from the best
fit plane are +6.6 mm and -6.5 mm. Approximately 55% of the measured survey points
fall within +/-3 mm of the best fit plane, and more than 90% of the points fall within ±5
mm. Figure 11 shows the results of the survey, with deviations from flat represented as
color-coded data extending away from the nominal plane of an ideal cathode.

– 20 –
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2.
3 

m
Figure 3.2: Left: Schematic of the MicroBooNE cryostat (outer cylinder). The top of

the detector features feed through connections for interfacing warm and cold electronics.

On side of the field cage can be seen within the cryostat. Right: Cross section of the

MicroBooNE detector with notable components labelled.

Figure 3.3: Left : Image shows the cathode plane surrounded by the stainless steel tubes

which comprise the field cage. Right : The three anode plane sense wires are shown. Insert

shows the orientation of wires of the U, V, and Y planes.

respect to one another. The “U” and “V” sense-wire planes are called induction planes as

ionization electrons pass nearby and produce signal via induction. The induction planes are

oriented at ±60 degrees with respect to the vertical and consist of 2400 wires each. The
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ionization charge is collected on the “Y” wire plane, called the collection plane, which is

oriented vertically and consists of 3456 wires. Each wire plane is held at a bias voltage to

achieve transparency of the first two induction wire planes. By collecting 2D projections

of ionization signal on two or more wire planes, the 3D configuration of the event can be

recovered. A schematic of the TPC operating principle is shown in Fig. 3.4.

Cathode 
Plane

Edrift 

U V Y

Liquid Argon TPC

Y wire plane waveforms

V wire plane waveforms
Sense Wires

t

Inco
ming Neutrin

o

Charged Particles

Figure 2. Operational principle of the MicroBooNE LArTPC.

The anode plane is arranged parallel to the cathode plane, and in MicroBooNE, parallel
to the beam direction. There are three planes comprised of sense wires with a characteristic
pitch, held at a predetermined bias voltage, that continuously sense the signals induced by
the ionization electrons drifting towards them [16]. The electrostatic potentials of the
sequence of anode planes allow ionization electrons to pass undisturbed by the first two
planes before ultimately ending their trajectory on a wire in the last plane. The drifting
ionization thus induces signals on the first planes (referred to as induction planes) and
directly contributes to the signals in the final plane (referred to as the collection plane).
Figure 2 depicts the arrangement of the MicroBooNE LArTPC and its operational principle.

The charged particle trajectory is reconstructed using the known positions of the anode
plane wires and the recorded drift time of the ionization. The drift time is the difference
between the arrival times of ionization signals on the wires and the time the interaction
took place in the detector (t0) which is provided by an accelerator clock synchronized to
the beam (BNB or NuMI) or from a trigger provided by the light collection system. The
characteristics of the waveforms observed by each wire provide a measure of the energy
deposition of the traversing particles near that wire, and, when taken as a whole for each
contained particle’s trajectory, allow for determination of momentum and particle identity.

The scintillation photons are detected by a light collection system that is immersed in

– 5 –

Figure 3.4: LArTPC signal formation diagram described in Section 3.2.

In Fig. 3.4 an incoming neutrino particle scatters on an argon nucleus producing two

forward going charged particles. The charged particles ionize the argon producing a cloud of

ionization electrons. The electron cloud is detected on the three planes with wires separated

by 3 mm. The signal on the V induction plane is shown blue and is bipolar in nature. The

electron cloud is deposited on the Y collection plane shown in red. The two track pattern can

be observed as a function of drift time, t, and spatial extent of the wires. The spatial location

of a particle’s trajectory inside the detector volume can be reconstructed by determining the

X, Y, and Z location of the electron cloud. The X position coordinate can be determined

by multipling the electron drift speed by the drift time coordinate. The Y and Z position is

determined by the wire overlap between planes, and wire number respectively. An example
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neutrino event observed in the MicroBooNE detector as projected on the three wire planes

is shown in Fig. 3.5.

U V

Y

Figure 3.5: Example neutrino candidate event observed in MicroBooNE. The same interac-

tion is shown on the U, V, and Y wire planes. A candidate muon, proton, and two photons

from π0 decay are likely present as final state particles.

3.3 Optical System

The MicroBooNE optical system collects scintillation light produced by excited argon atoms

and is an important input for triggering on neutrino interactions. Neutrino interactions

from the beam produce a large amount of light which are detected by an array of 32

photomultipliers located behind the wire planes and facing the cathode. Wire signals alone

are not sufficient to determine the absolute drift location of particles as an ambiguity is

introduced due to the millisecond length of the TPC readout time. Scintillation light which

arrives on the order of nanoseconds can accurately determine the event timing. Scintillation

light is produced in liquid argon by the formation and subsequent radiative decay of excited
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argon dimers which yield tens of thousands of photons per MeV of energy. Scintillation

light is emitted isotropically with a wavelength of 128 nm and arrives on nanosecond time

scales to the PMT array without re-absorption by argon. Each optical unit consists of

8-inch cryogenic Hamamatsu PMTs covered with a flat acrylic plate. The acrylic plate is

coated with a mixture of Tetraphenyl Butadiene (TPB) and polystyrene. TPB is an organic

molecule which absorbs UV light and re-emits in the visual range at ∼ 425 nm. Photons

are re-emitted isotropically by the plate which leads to an inefficiency for light collection.

A diagram of a MicroBooNE PMT and layout of the cathode facing PMT rack is shown in

Fig. 3.6.

TPB plate

Teflon coated  
wire

Magnetic 
shield

Back 
plate

Teflon
spacer

Aluminium 
ring
Spring 

loaded wire

Figure 3.6: Left : Diagram of a MicroBooNE 8-inch PMT. Right : PMT rack array located

behind the anode wire planes and mounted on the MicroBooNE cryostat wall.

3.4 Electronics Readout and Event Trigger

The TPC and optical systems form analog signals in the cold which are read out and

digitized in warm electronics crates located above the cryostat. The cold electronics feature

CMOS ASIC devices mounted on a dedicated motherboard for signal amplification and

shaping. The ASIC applies a gain of 14 mV/fC and a 2 µs shaping time. Cold cables

transmit signals through feedthroughs mounted on the cryostat to warm electronics crates

where the signals are digitized and formatted before being shipped to the data acquisition

system. The front end modules (FEMs) TPC signals are digitized at 16 MHz sampling
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with 12 bits resolution, then processed by an FPGA chip where they are down sampled to

2 MHz. The collection of three wire planes is read out in three 1.6 ms frames. The frame

size is chosen based on the time for ionization electrons to travel in the electric field from

the far end of the detector. One frame is recorded prior to the trigger, and two after. The

data rate is reduced by applying a Huffman coding scheme.

PMT signals are processed in a similar fashion. PMT signals are first shaped into a

positive unipolar shape with a 60 ns shaping time which returns to baseline at approximately

200 ns. The signal is then digitized at 64 MHz sampling. There are two types of PMT

readout, beam and cosmic discriminator read out. The beam discriminator has no threshold

and reads out 1500 samples (23.4 µs) around the beam spill. The PMTs dynamic range is

captured by reading out a high gain and low gain channel simultaneously. TPC and PMT

data are finally transmitted via optical links from a transmit board (XMIT) located in each

crate to PCI express ports on data acquisition PCs (DAQ). A schematic of the detector

readout is shown in Fig. 3.7.

Figure 3.7: MicroBooNE readout schematic. The cold electronics located within the detec-

tor are shown in the left including the TPC and PMT channels. Data are read out via cables

through warm feedthroughs and the flange to racks of electronics located on the right. A

trigger board hosts accelerator signals, and external triggering logic for detector readout.
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A continuous TPC stream of data is also in operation at MicroBooNE which enables the

detection of supernova neutrinos, called the “supernova stream”. Supernova stream signals

are lossy compressed in the FPGA by applying a channel-wise ADC threshold. This stream

continually reads out TPC signals into a temporary storage buffer on the DAQ machines

awaiting a Supernova Early Warning System (SNEWS) alert [13].

TPC and PMT signals are read out when a trigger is issued to controller boards located

in the readout crates. MicroBooNE receives signals from the Fermilab accelerator complex

when beam is expected, called the BNB trigger. This trigger causes a beam gate window

to open in the PMT and TPC readout for data taking. As most BNB triggers do not result

in a neutrino interaction, an additional software based trigger is employed to determine

the presence of optical activity above threshold within the detector. A software based

trigger allows for higher complexity algorithms to be deployed an a shorter timescale. The

algorithms require 6.5 effective PE of optical activity in the 1.6 µs beam spill window and

results in a rejection of ∼97% of spills. Optical activity within the BNB beam-gate window

is shown in Fig. 3.8.

Triggers unassociated with the beam are called external triggers and are used to collect

background data such as cosmic ray only interactions. External BNB events, or EXT-BNB,

are manual triggers of the detector which pass the software trigger requirements and rep-

resent events where no neutrino interaction is present, but the optical activity indicates

detector activity. EXT-BNB events are extensively used in this thesis for cosmic ray back-

ground studies. Once the readout is complete the data are shipped to the DAQ machines

for packaging into a specialty file format and then stored on tape.
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MicroBooNE Preliminary

Figure 3.8: The measured distribution of flash times (requiring flashes greater than 50 PE)

with respect to the trigger time for BNB-triggered events, shown as a ratio to the expected

cosmic rate from off-beam data [1]. The blue band denoting the cosmic rate was centered

at one, with a width corresponding to the measured uncertainty in the cosmic rate. A clear

excess can be seen due to neutrinos between 3 and 5 µs after the trigger where neutrinos

are expected.
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Chapter 4

The Booster Neutrino Beam

The purpose of this chapter is to describe the Booster Neutrino Beam-line (BNB) located at

Fermilab. The beamline uses 8 GeV protons from the BNB directed onto a beryllium target.

The secondary hadrons are focused by a magnetic horn down a long decay pipe. Decays of

secondaries then give rise to a neutrino beam which is directed at the MicroBooNE detector.

The beam, proton target and focusing horn, and the beam composition are described. The

flux of neutrinos at MicroBooNE is also described. It is important to understand the flux

of muon and electron neutrinos at MicroBooNE to set the analysis goals for probing a low

energy signal.

4.1 The Booster Proton Beam

Protons in the BNB originate from hydrogen gas molecules which are ionized to H− using a

Cockcroft–Walton generator and then directed into a linear accelerator machine (LINAC).

In the LINAC, the negatively charged ions are accelerated from 750 keV to 400 MeV in two

stages, a low and high energy section, via a series of radio frequency (RF) cavities. The 400

MeV ions exiting the LINAC are injected into the booster facility by passing them through

a stripping foil to remove electrons. The booster machine is a rapidly cycling synchrotron

which accelerates protons from 400 MeV to 8 GeV kinetic energy at a rate of 15 Hz using a

series of magnets and RF cavities. The protons are bunched into 81 units, each 2 ns wide,

and spaced in 1.6 µs batches. Each batch has a maximum allowable repetition rate for
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delivery of protons to the target of 5 Hz with approximately 5×1012 protons per pulse. The

number of protons directed on target (POT) is measured by two toroids upstream of the

target as part of a larger beam monitoring system which includes beam position monitors,

a resistive wall monitor, and multi-wire chamber which monitor beam characteristics. A

schematic of the accelerator complex is shown in Fig. 4.1.

MiniBooNE 
Detector

M113

M112

450 m

Pbar Booster
Linac

8 GeV  
INJ

Figure 4.1: Overhead view of the Fermilab accelerator complex surrounding the BNB. The

MicroBooNE detector is located on the same beam line as the MiniBooNE detector.

4.2 Proton Target and Focusing Horn

The 8 GeV proton beam strikes a beryllium target of 71.1 cm in length and 0.51 cm in

radius. Beryllium was chosen due to its thermal and mechanical properties, high pion yield,

and low energy deposition per unit length, which minimizes the load on the cooling system.

Additionally, beryllium was chosen to minimize the remnant radioactivity due to proton

exposure. The target itself is located within a larger focusing magnet, called the horn,

which is an aluminum alloy toroidal electromagnet. The target and a schematic of the horn

are shown in Fig. 4.2.

High energy protons interact inside the beryllium target and produce primarily charged

pions with a significant fraction of charged kaons. The magnet focusing horn sign selects
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Figure 4.2: Left : BNB target enclosure. Right : Magnetic focusing horn schematic. The

target rests inside within the inner cylindrical cavity (green).

postive or negatively charged mesons by tuning the direction of the magnetic field. Other

secondary particles are deflected away from the decay region due to variations in their mass

and energy. The normal horn configuration selects positively charged pions for neutrino

production as shown in Fig. 4.3.
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Figure 4.3: Diagram of an incident proton beam on the target located within the magnetic

focusing horn. Running in the neutrino mode, the horn selects π+ particles for passage into

a 50 m long decay region. The pions decay to a muon type particle and neutrino in the

decay region. The muon type particle is absorbed in the dirt, while the neutrino travels

onward in the beam direction.

The horn operates at up to a 5 Hz rate, with a 170 kA pulse lasting for 150 µs producing a

maximum magnetic field of 1.5 T. The horn focuses pions into a 50 meter decay region which

is a steel pipe of two meters in diameter. At the end of the decay pipe a steel absorber stops

secondaries produced in the target except for neutrinos. An additional absorber located at

25 m can be lowered into the decay pipe to modulate the rate of secondaries. The neutrinos

then travel a distance of 470 m to the MicroBooNE detector.
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4.3 Beam Composition

The MicroBooNE beam is largely dominated by νµ which are produced via the π+ → µ+νµ

decay chain with some contamination of νe from subsequent µ+ decay via µ+ → e+νeν̄µ.

The π+ meson can instead decay directly to e+ and νe but is suppressed relative to muon

neutrino production by a factor of 10−4. Kaon type particles contribute to the neutrino

flux at energies 2.5 GeV and above. The neutrino flux prediction at MicroBooNE uses

the Booster Neutrino Beam Monte-Carlo developed by the MiniBooNE collaboration which

includes a full GEANT4 simulation of the beam-line, focusing horn, and decay region. The

full simulation details are described in [14]. The flux prediction for the MicroBooNE detector

reuses the same simulation with modified detector parameters. The primary uncertainty on

the π+ production is estimated by propagating errors via splines through HARP data [15],

consistent with the latest MiniBooNE publications. In addition, an updated constraint for

K+ production is used as measured by SciBooNE [16]. Fig. 4.4 shows the neutrino flux

at MicroBooNE for four neutrino states as modelled by the MiniBooNE beam simulation

applied to the MicroBooNE detector.
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Figure 1: The absolute neutrino flux prediction through the MicroBooNE detector as
calculated by the beam simulation. Shown is the flux for ⌫µ, ⌫̄µ, ⌫e, and ⌫̄e averaged through
the TPC volume with dimensions 2.56m⇥2.33m⇥10.37m.
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Figure 2: The ⌫µ (left) and ⌫e (right) neutrino flux just upstream of the MicroBooNE
detector. Shown is the comparison of flux constrained by global fit to K+ production data
(old) to the one that additionally includes SciBooNE data [6] (new).

2 Neutrino Flux Calculation

Figure 1 shows the predicted neutrino flux averaged through the MicroBooNE detector TPC
volume. This is the absolute flux as generated by the simulation. No scaling factors are
needed or applied.

Figure 2 shows the e↵ect on the neutrino flux when SciBooNE data [5] is included in the
global fit of K+ production data [6]. Note that the flux shown in the figure was calculated
upstream of MicroBooNE detector, and not averaged through TPC volume as in Figure 1.

2

Figure 4.4: Neutrino flux prediction at MicroBooNE for four neutrino states as modelled

by the MiniBooNE beam simulation applied to MicroBooNE [2].
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Chapter 5

Low Energy Excess: LSND and

MiniBooNE

This chapter provides a historical overview of the low energy excess observed in the LSND

and MiniBooNE experiments. In 2001 the LSND experiment reported an excess of ν̄e

events in a ν̄µ beam via µ+ decay at rest which suggested neutrino oscillations occur in the

∆m2 ∼ 1 eV2 range [3]. The MiniBooNE experiment observed an excess of electron like

events in a νµ beam at low energy in 2009 [17] which can be interpreted as ∆m2 ∼ 1 eV2

oscillations including a single light sterile neutrino. The low energy excess phenomena is

explored in this thesis in the MicroBooNE experiment in subsequent chapters.

5.1 The LSND Signal

The Liquid Scintillator Neutrino Detector (LSND) experiment ran at Los Alamos National

Laboratory from 1993 to 1998 and studied antineutrinos from a decay at rest source of

µ+. The source of neutrinos originated from 798 MeV protons impinged on a water target

which produced primarily positively charged pions. The positive pions then came to rest

and decayed through the sequence,

π+ → µ+ + νµ, (5.1)

µ+ → e+ + νe + ν̄µ, (5.2)
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which produced a muon antineutrino with maximum energy 52.8 MeV. The LSND detector

was a tank filled with 167 tons of liquid scintillator located approximately 30 meters from

the neutrino source and surrounded by a veto shield and 1220 8” photomultiplier tubes.

LSND searched for ν̄µ → ν̄e oscillations via inverse beta decay. Electron antineutrinos

were detected by ν̄ep → e+n, followed by a neutron capture reaction, np → dγ, in which

a Cherenkov electron signal is followed by a correlated 2.2 MeV photon detection. The

antineutrino energy ranged between 20 and 60 MeV with the lower limit imposed to reject νe

background providing an L/E ∼ 1 m/MeV. The reconstructed neutrino energy is estimated

from the outgoing reconstructed positron energy and angle assuming two body kinematics.

LSND reported 87.9 ± 22.4 ± 6.0 events [3] consistent with inverse beta decay above

expected backgrounds. The excess is shown in Fig. 5.1 as a function of reconstructed

positron energy and the ratio of the neutrino interaction length to the reconstructed neutrino

energy.

Figure 5.1: Observed LSND data (black points) above expected backgrounds (green and

red) and the best fit spectrum for ν̄µ → ν̄e oscillations [3] (blue). Left : Data as a function

of the outgoing positron energy. Right : Spectrum as a function of the ratio between the

distance traveled by the neutrino L, and Eν the reconstructed neutrino energy.

The excess can be interpreted as ∆m2 ∼ 1 eV2 oscillations with a mixing angle of

sin2 θµe = 0.003. The LSND excess mixing parameters cannot be accommodated by three
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neutrino mixing which allows for two independent ∆m2 scales smaller than 1 eV2. One

explanation for the LSND excess is the possible existence of sterile neutrino states which

cannot interact weakly. The LSND result was addressed by the MiniBooNE experiment

which searched for νe interactions at a similar baseline and neutrino energy (L/E).

5.2 The MiniBooNE Experiment

5.2.1 MiniBooNE Detector

The Mini-Booster Neutrino Experiment (MiniBooNE) detector was constructed to investi-

gate the anomalous excess of electron antineutrino events observed in the LSND experiment.

The detector is a spherical Cherenkov detector located at 541 meters downstream of the

BNB neutrino production target and has taken a total of 11.27× 1020 POT in antineutrino

mode, and 12.84 × 1020 POT in neutrino mode for 15 years of data taking. The detector

consists of a 12.2 meter diameter sphere filled with 818 tons of mineral oil and located 3

meters underground and is shown in Fig. 5.2. The active detector region is surrounded

by 1280 8” photomultiplier tubes, and a 35 cm thick outer veto region with additional

PMTs [18]. The detector is situated in a primarily νµ beam of approximately 750 MeV in

energy, the same beam line as MicroBooNE, and resulting in a similar L/E as LSND. The

MiniBooNE experiment was designed to search for νµ → νe and ν̄µ → ν̄e oscillations with

different backgrounds and systematic uncertainties as an independent check of the LSND

observation.

The detection principle is based on Cherenkov light produced by particles passing

through mineral oil. Certain final state particles produced in neutrino scattering interac-

tions may attain energies exceeding the Cherenkov threshold. In MiniBooNE, these particles

include muons, electrons, and pions. The spatial distribution of Cherenkov light detected

by the PMTs located on the detector walls are used for energy, direction, and particle iden-

tification. Unique patterns of Cherenkov light are characteristic of the underlying particle

which traversed the detector and are shown in Fig. 5.3.

Three relevant light topologies are shown. The muon particle, characteristic of νµ inter-

actions, emits light radially along its propagation direction producing a pattern of co-centric



CHAPTER 5. LOW ENERGY EXCESS: LSND AND MINIBOONE 28

Figure 5.2: The MiniBooNE detector subterranean enclosure (left) showing the experimen-

tal hall layout. The PMT configuration inside the tank and in the veto region is show on

the right. A human is shown for scale.

Particle Track Cherenkov Ring

Muon track

Electron/Photon

Neutral Pion 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Figure 5.3: Patterns of Cherenkov light characteristic of muon, electron, and neutral pion

type particles. The left column shows the light emission behavior along the particle’s

trajectory while the right column shows the pattern of light observed the photomultiplier

array.

circles. The electron, characteristic of νe interactions, and the photon particle produces hol-

low, fuzzy rings. Neutral pions feature two electromagnetic rings with potential for overlap.

It is important to note that the electron and single photon ring pattern can not be distin-
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guished which leads to an ambiguity related to the origin of the low energy excess.

The visible particle energy is calibrated using incoming stopping muons which have a

well-defined range, as well as electrons from muon decay. Additionally, MiniBooNE made

use of π0 particles to provide energy calibration for the hundreds of MeV energy scale.

5.2.2 Event Selection

The topology of interest in the MiniBooNE oscillation search are charge current quasi-elastic

(CCQE) scattering events. CCQE events are identified via an event selection technique

which utilizes a maximum likelihood fitting algorithm. The reconstruction algorithm uses

features of Cherenkov radiation topologies and PMT timing information to determine the

likelihood of particle species. Additional analysis cuts on the distance of the vertex to

the detector walls as well as additional kinematics-based cuts remove events which are

associated with interactions which take place outside the detector fiducial volume. The

CCQE based analysis identified the presence of a single electron or muon particle in time

with the beam and with the desired kinematics. The CCQE formula is used to estimate

the neutrino interaction energy assuming two body scattering. Both νµ/ν̄µ and νe/ν̄e event

rates are measured a function of CCQE energy where the measured νµ events are used to

constrain the systematic uncertainties on the νe as described in Section 10.5. The latest

MiniBooNE neutrino data for the νe selection is shown in Fig. 5.4 along with the prediction

of the background rate from various sources [4].

An excess of events in the data spectrum is observed over the predicted background

in the less than 475 MeV region. Above 475 MeV there is good agreement between data

and prediction. Multiple sources of background are estimated for the νe CCQE search. The

primary background in the excess region are photons produced from neutral-current π0 pro-

duction and radiative delta decay which are mis-identified as CCQE νe interactions. In a

π0 event, one photon may exit the detector, or both photons may overlap with one another,

producing an electron like Cherenkov signature. Both sources of photons are constrained

by a side band sample of two-gammas observed in MiniBooNE data. Systematic uncertain-

ties on the background prediction are determined by varying the neutrino flux estimates,

neutrino cross sections, and uncertainties in detector modelling and reconstruction. In neu-
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mode and antineutrino mode [26]. See Supplemental
Material [27] for more information on backgrounds. The
upper limit of 1250 MeV corresponded to a small value of
L=E and was chosen by the collaboration before unblind-
ing the data in 2007. The lower limit of 200 MeV is chosen
because we constrain the νe events with the CCQE νμ
events and our CCQE νμ event sample only goes down to
200 MeV, as we require a visible Cherenkov ring from the
muon. The estimated sizes of the intrinsic νe and gamma
backgrounds are based on MiniBooNE event measure-
ments and uncertainties from these constraints are included
in the analysis. The intrinsic νe=ν̄e background from muon
decay is directly related to the large sample of observed
νμ=ν̄μ events, as these events constrain the muons that
decay in the 50 m decay region. This constraint uses a joint
fit of the observed νμ=ν̄μ and νe=ν̄e events, assuming that
there are no substantial νμ=ν̄μ disappearance oscillations.
The other intrinsic νe background component, from kaon
decay, is constrained by fits to kaon production data and
SciBooNEmeasurements [28]. The intrinsic νe background
from pion decay (1.2 × 10−4 branching ratio) and hyperon
decay are very small. Other backgrounds from misidenti-
fied νμ or ν̄μ [29,30] events are also constrained by the
observed CCQE sample.
The gamma background from neutral-current (NC) π0

production and Δ → Nγ radiative decay [31,32] are con-
strained by the associated large two-gamma sample (mainly
from Δ production) observed in the MiniBooNE data,
where π0 measurements [33] are used to constrain the π0

background. The π0 background measured in the first and
second neutrino data sets were found to be consistent,
resulting in a lower statistical background uncertainty for
the combined data. Other neutrino-induced single gamma
production processes are included in the theoretical pre-
dictions, which agree well with the MiniBooNE estimates
[31,34]. Single-gamma backgrounds from external neu-
trino interactions (“dirt” backgrounds) are estimated using
topological and spatial cuts to isolate the events whose
vertices are near the edge of the detector and point towards
the detector center [35]. With the larger data set, the
background from external neutrino interactions is now
better determined to be approximately 7% larger, but with
smaller uncertainty than in the previous publication [3].
A new technique to measure or constrain the gamma and
dirt backgrounds based on event timing relative to the beam
is in development.
Systematic uncertainties are determined by considering

the predicted effects on the νμ, ν̄μ, νe, and ν̄e CCQE rates
from variations of uncertainty parameters. The parameters
include uncertainties in the neutrino and antineutrino flux
estimates, uncertainties in neutrino cross sections, most of
which are determined by in situ cross-section measure-
ments at MiniBooNE [29,33], uncertainties from nuclear
effects, and uncertainties in detector modeling and
reconstruction. A covariance matrix in bins of EQE

ν is

constructed by considering the variation from each source
of systematic uncertainty on the νe and ν̄e CCQE signal and
background, and the νμ and ν̄μ CCQE prediction as a
function of EQE

ν . This matrix includes correlations between
any of the νe and ν̄e CCQE signal and background and νμ
and ν̄μ CCQE samples, and is used in the χ2 calculation of
the oscillation fits.
Table I also shows the expected number of events

corresponding to the LSND best fit oscillation probability
of 0.26%, assuming oscillations at large Δm2. LSND and
MiniBooNE have the same average value of L=E, but
MiniBooNE has a larger range of L=E. Therefore, the
appearance probabilities for LSND andMiniBooNE should
not be exactly the same at lower L=E values.
Figure 1 shows theEQE

ν distribution for νe CCQE data and
background in neutrino mode for the total 12.84 × 1020 POT
data. Each bin of reconstructed EQE

ν corresponds to a
distribution of “true” generated neutrino energies, which
can overlap adjacent bins. In neutrino mode, a total of 1959
data events pass the νe CCQE event selection requirements
with 200 < EQE

ν < 1250 MeV, compared to a background
expectation of 1577.8! 39.7ðstatÞ ! 75.4ðsystÞ events. The
excess is then 381.2! 85.2 events or a 4.5σ effect. Note that
the 162.0 event excess in the first 6.46 × 1020 POT data is
approximately 1σ lower than the average excess, while the
219.2 event excess in the second 6.38 × 1020 POT data is
approximately 1σ higher than the average excess. Figure 2
shows the excess events in neutrino mode from the first
6.46 × 1020 POT data and the second 6.38 × 1020 POT data
(top plot). Combining the MiniBooNE neutrino and anti-
neutrino data, there are a total of 2437 events in the 200 <
EQE
ν < 1250 MeVenergy region, compared to a background
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FIG. 1. The MiniBooNE neutrino mode EQE
ν distributions,

corresponding to the total 12.84 × 1020 POT data, for νe CCQE
data (points with statistical errors) and background (histogram
with systematic errors). The dashed curve shows the best fit to the
neutrino-mode data assuming two-neutrino oscillations. The last
bin is for the energy interval from 1500–3000 MeV.
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Figure 5.4: MiniBooNE electron neutrino CCQE neutrino mode data for 12.84× 1020 POT

data [4]. The stacked colored histogram estimates the background content shown with

constrained systematic uncertainties.

trino mode, a total of 1959 data events pass the νe CCQE event selection, compared to a

background expectation of 1577.8 ± 39.7(stat) ± 75.4(sys) events. The excess corresponds

to a 4.5σ effect. Combining neutrino and anti-neutrino data a 4.7σ effect is observed [4].

5.3 Oscillations Results

The MiniBooNE event excess data is fit to a two neutrino oscillations model and is shown

in Fig. 5.5 to compare with the LSND data. The best fit oscillations point for combined

neutrino and anti-neutrino mode is (∆m2, sin2 2θ) = (0.041 eV2, 0.92) and is shown as

the black dot. The MiniBooNE 1σ allowed regions lies within the LSND 90% confidence

interval demonstrating good agreement between the two signals. Fig. 5.6 shows the event

excess for neutrino and antineutrino mode with the best fit oscillations model overlaid. The

two neutrino oscillation interpretation of the data requires at least four neutrino types and

is indication of physics beyond the standard model in the neutrino sector. The low energy

excess is further probed using the MicroBooNE experiment and is the subject of this thesis.
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parameters [38]. These effects were studied previously
[3,39] and were found to not affect substantially the
oscillation fit. In addition, they do not affect the gamma
background, which is determined from direct measure-
ments of NC π0 and dirt backgrounds.
Figure 4 shows the MiniBooNE allowed regions in both

neutrino mode and antineutrino mode [3] for events with
200 < EQE

ν < 3000 MeV within a two-neutrino oscillation
model. For this oscillation fit the entire data set is used and
includes the 12.84 × 1020 POT data in neutrino mode and
the 11.27 × 1020 POT data in antineutrino mode. As shown
in the figure, the MiniBooNE 1σ allowed region lies mostly
within the LSND 90%C.L. band, which demonstrates good
agreement between the LSND and MiniBooNE signals.
Also shown are 90% C.L. limits from the KARMEN [36]
and OPERA [37] experiments. The KARMEN2 90% C.L.
limits are outside the MiniBooNE 95% C.L. allowed
region, while the OPERA 90% C.L. limits disfavor the
MiniBooNE allowed region below approximately 0.3 eV2.
The best combined neutrino oscillation fit occurs at
ðΔm2; sin22θÞ ¼ ð0.041 eV2; 0.92Þ. The χ2=ndf for the
best-fit point in the energy range 200 < EQE

ν < 1250 MeV

is 19.4=15.6 with a probability of 21.1%, and the back-
ground-only fit has a χ2 probability of 6 × 10−7 relative to
the best oscillation fit and a χ2=ndf ¼ 47.1=17.3 with a
probability of 0.02%.
Figure 5 compares the L=EQE

ν distributions for the
MiniBooNE data excesses in neutrino mode and antineu-
trino mode to the L=E distribution from LSND [1]. The
error bars show statistical uncertainties only. As shown in
the figure, there is agreement among all three data sets.
Assuming two-neutrino oscillations, the curves show fits to
the MiniBooNE data described above. Fitting both
MiniBooNE and LSND data, by adding LSND L=E data
as additional terms, the best fit occurs at ðΔm2; sin22θÞ ¼
ð0.041 eV2; 0.96Þ with a χ2=ndf ¼ 22.4=22.4, corre-
sponding to a probability of 42.5%. The MiniBooNE
excess of events in both oscillation probability and L=E
spectrum is, therefore, consistent with the LSND excess of
events. The significance of the combined LSND (3.8σ) [1]
and MiniBooNE (4.7σ) excesses is 6.0σ, which is obtained
by adding the significances in quadrature, as the two
experiments have completely different neutrino energies,
neutrino fluxes, reconstructions, backgrounds, and system-
atic uncertainties.
In summary, the MiniBooNE experiment observes a total

νe CCQE event excess in both neutrino and antineutrino
running modes of 460.5$ 99.0 events (4.7σ) in the energy
range 200 < EQE

ν < 1250 MeV. The MiniBooNE allowed
region from a two-neutrino oscillation fit to the data, shown
in Fig. 4, is consistent with the allowed region reported by
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FIG. 4. MiniBooNE allowed regions for a combined neutrino
mode (12.84 × 1020 POT) and antineutrino mode (11.27 × 1020

POT) data sets for events with 200 < EQE
ν < 3000 MeV within a

two-neutrino oscillation model. The shaded areas show the 90%
and 99% C.L. LSND ν̄μ → ν̄e allowed regions. The black point
shows the MiniBooNE best fit point. Also shown are 90% C.L.
limits from the KARMEN [36] and OPERA [37] experiments.

FIG. 5. A comparison between the L=EQE
ν distributions for the

MiniBooNE data excesses in neutrino mode (12.84 × 1020 POT)
and antineutrino mode (11.27 × 1020 POT) to the L=E distribu-
tion from LSND [1]. The error bars show statistical uncertainties
only. The curves show fits to the MiniBooNE data, assuming two-
neutrino oscillations, while the shaded area is the MiniBooNE 1σ
allowed band. The best-fit curve uses the reconstructed neutrino
energy EQE

ν for the MiniBooNE data. The dashed curve shows the
example 1σ fit point.
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Figure 5.5: MiniBooNE allowed regions for combined neutrino and antineutrino mode run-

ning [4]. A total of 12.84×1020 POT and 11.27×1020 POT data are collected for neutrino

and antineutrino mode respectively.

expectation of 1976.5! 44.5ðstatÞ ! 88.5ðsystÞ events.
This corresponds to a total νe plus ν̄e CCQE excess of
460.5! 99.0 events with respect to expectation or a 4.7σ
excess. Figure 2 (bottom plot) shows the total event excesses
as a function of EQE

ν in both neutrino mode and antineutrino
mode. The dashed curves show the two-neutrino oscillation
predictions at the best-fit point (Δm2 ¼ 0.041 eV2,
sin2 2θ ¼ 0.92), as well as at a point within 1σ of the
best-fit point (Δm2 ¼ 0.4 eV2, sin22θ ¼ 0.01).
A two-neutrino model is assumed for the MiniBooNE

oscillation fits in order to compare with the LSND data.
However, the appearance neutrino experiments appear to be
incompatible with the disappearance neutrino experiments
in a 3þ 1 model [10,12], and other models [15–19] may
provide better fits to the data. The oscillation parameters are
extracted from a combined fit of the observed EQE

ν event
distributions for muonlike and electronlike events using
the full covariance matrix described previously in the full

energy range 200 < EQE
ν < 3000 MeV. The fit assumes the

same oscillation probability for both the right-sign νe and
wrong-sign ν̄e, and no νμ, ν̄μ, νe, or ν̄e disappearance. Using
a likelihood-ratio technique [3], the confidence level values
for the fitting statistic, Δχ2 ¼ χ2ðpointÞ − χ2ðbestÞ, as a
function of oscillation parameters, Δm2 and sin2 2θ, is
determined from frequentist, fake data studies. The fake
data studies also determine the effective number of degrees
of freedom and probabilities. With this technique, the
best neutrino oscillation fit in neutrino mode occurs at
(Δm2, sin22θ)¼ (0.039 eV2, 0.84), as shown in Fig. 3. The
χ2=ndf for the best-fit point in the energy range 200 <
EQE
ν < 1250 MeV is 9.9=6.7 with a probability of 15.5%.

The background-only fit has a χ2 probability of 0.06%
relative to the best oscillation fit and a χ2=ndf ¼ 24.9=8.7
with a probability of 0.21%. Figure 3 shows the
MiniBooNE closed confidence level (C.L.) contours for
νe appearance oscillations in neutrino mode in the
200 < EQE

ν < 3000 MeV energy range.
Nuclear effects associated with neutrino interactions on

carbon can affect the reconstruction of the neutrino energy,
EQE
ν , and the determination of the neutrino oscillation
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FIG. 2. The top plot shows the MiniBooNE event excesses in
neutrino mode as a function of EQE

ν from the first 6.46 × 1020

POT data and the second 6.38 × 1020 POT data. The bottom plot
shows the total event excesses in both neutrino mode and
antineutrino mode, corresponding to 12.84 × 1020 POT and
11.27 × 1020 POT, respectively. The solid (dashed) curve is
the best fit (1σ fit point) to the neutrino-mode and antineu-
trino-mode data assuming two-neutrino oscillations. The last bin
is for the energy interval from 1500–3000 MeV. Error bars
include only statistical uncertainties for the top plot and both
statistical and correlated systematic uncertainties for the bottom
plot.
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Figure 5.6: MiniBooNE event excess in neutrino and antineutrino mode for the full dataset

with statistical and systematic uncertainties [4]. The solid (dashed) curve shows the best

fit to the neutrino and antineutrino mode data assuming two neutrino oscillations.
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Chapter 6

Low Energy Excess: MicroBooNE

This chapter describes the low energy excess signal (LEE) model used to test the Micro-

BooNE sensitivity to the MiniBooNE low energy excess. The MiniBooNE neutrino mode

data is unfolded to estimate the true underlying event excess by removing reconstruction

and event selection effects. An electron-like LEE model is described as an energy-dependent

modification to the rate of intrinsic νe charged current interactions which could appear via

a modification of the νe flux and/or cross section.

6.1 MicroBooNE In Context

The MiniBooNE low energy excess appears as an excess of observed νe CCQE events above

predicted backgrounds below approximately 600 MeV in reconstructed neutrino energy

as shown in Fig. 5.4. In this energy region, a large fraction of background events are

non-intrinsic νe events as estimated by the MiniBooNE Monte Carlo. These backgrounds

include photons coming from neutral current (NC) π0 events and NC radiative ∆ → Nγ

decay events, where N is a proton or neutron, and are the largest backgrounds in the low

energy region where the excess is present. Due to MiniBooNE being a mineral oil Cherenkov

detector, it is unable to differentiate Cherenkov rings from electromagnetic showers that

originate from either an electron or a photon. Additionally, proton particles do not produce

Cherenkov radiation in mineral oil below 1.2 GeV and thus will not be visible in the excess

region. The beam excess could be interpreted as an excess of either single photon or



CHAPTER 6. LOW ENERGY EXCESS: MICROBOONE 33

single electron events, or some combination of the two. A complete picture of the neutrino

scattering activity around the vertex cannot be fully reconstructed with the MiniBooNE

detector. The MicroBooNE detector, described in detail in Chapter 3, was proposed to

elucidate the nature of the low energy excess by allowing for discrimination capability

between electron and photon particles as well as provide high resolution information of the

neutrino vertex activity.

The MicroBooNE detector is situated in the same neutrino beam at a similar baseline

as the MiniBooNE experiment, the MicroBooNE detector is located 470 m from the BNB

production target, while the center of the MiniBooNE detector is 541 m. Two powerful re-

construction techniques are available to discriminate between electron and photon particles

in LArTPC detectors. First the dE/dx profile, or charge per unit length, at the beginning

of electron and photon showers differs by a factor of two. Electron particles feature an aver-

age energy deposition of roughly 2 MeV/cm (minimally ionizing) before showering. Photon

particles feature pair production of an e+/e− pair. When the pair is boosted they will over-

lap and have twice the energy deposition as a single electron. The dE/dx at the beginning

of the showers trajectory can be reconstructed by following the charge from the shower

start point until its showering point. The dE/dx separation between electron and photon

particles has been measured by the ArgoNeuT collaboration [19] and good separation is

observed. A selection cut between the expected electron and photon dE/dx of 2.9 MeV/cm

is approximately 76% efficient for electrons with 7% photon mis-identification using Ar-

goNeUT data. Finally, photon particles will invisibly travel approximately 14 cm in liquid

argon until Compton scattering or pair production where charge partciles are produced.

In neutrino scattering, electron daughter particles will be connected to the vertex while

photon daughter particles, such as in π0 or ∆ radiative production, will feature a physical

gap between the vertex and electromagnetic cascade. The distinction between electron and

photon particles can be inferred using the presence of these two features and are included

in the neutrino pattern recognition algorithms described in this thesis. With the LArTPC

detector technology, MicroBooNE will be able to adress the nature of the MiniBooNE low

energy excess.
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6.2 LEE Prediction in MicroBooNE

6.2.1 Unfolding MiniBooNE Data

The MiniBooNE low energy excess signal is translated into MicroBooNE by unfolding the

MiniBooNE observed excess given a model for the signal’s origin. The unfolded signal repre-

sents the “raw” LEE signal which would be necessary to reproduce the observed excess given

the reconstruction efficiency, selection cuts, and detector effects present in the MiniBooNE

neutrino mode analysis. There is no model independent way of propagating the excess as

the unfolding of the detector effects and reconstruction efficiency is model dependent.

The MiniBooNE observed excess, OMB(x), as a function of a given observable, x, such

as reconstructed energy, can be determined by subtracting the MiniBooNE background

prediction BMB(x) from the MiniBooNE observed data DMB(x),

OMB(x) = DMB(x)−BMB(x). (6.1)

The observed excess is related to a raw excess prediction in MiniBooNE, RMB(ξ), for a

given MC truth level parameter, ξ, by

OMB(x) = A(x, ξ)RMB(ξ), (6.2)

where A(x, ξ) is the response matrix. The response matrix encapsulates the detector, re-

construction, and selection effects which can be understood as the conditional probability

that a given true parameter ξ ends up in a given reconstructed bin. Equation 6.2 can be

solved by inversion and is the process of unfolding. The raw event excess RMB(ξ) is used

to determine the amount by which the MiniBooNE Monte-Carlo central value (CV) predic-

tions would have to be modified in such a way to give rise to an excess consistent with the

observation,

MMB(ξ) =
RMB(ξ)

CV MB(ξ)
, (6.3)

where MMB(ξ) is the model and CV MB is the central value in MiniBooNE. The model

can then be applied to the MicroBooNE CV, CV µB(ξ), to provide a prediction for the

MicroBooNE excess signal, RµB(ξ), for a given model,

RµB(ξ) = MMB(ξ)CV µB. (6.4)
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6.2.2 Unfolding Methodology

The unfolding procedure provides a map between a reconstructed variable after the event

selection is applied to an underlying true variable, such as true neutrino energy. The

problem stated in Equation. 6.2 can be solved exactly using the single value decomposition

technique of the response matrix,

A = OSV T , (6.5)

where O and V are orthogonal matrices of square size with dimensions corresponding to

the number of reconstructed and true energy bins respectively. The matrix S is a diagonal

matrix containing zeroes or positive elements which are called the singular values of A. The

unfolded spectrum, uα, is then given by,

uα =
∑

k

∑

j

VαkO
T
kj

(
dj
sk

)
, (6.6)

where d is the folded spectrum and s are the singular values of A. If any singular values

are near or identically zero, statistical fluctuations in the folded spectrum will be amplified

in the unfolded spectrum. Instead of directly inverting the response matrix the problem of

unfolding is rephrased in terms of finding the solution which minimizes,

(Au− d)TD−1(Au− d) = min, (6.7)

where D is a covariance matrix. A regularization procedure is applied by introducing a

small known bias in order to make an improvement in the variance of the final unfolded

spectra. Two methods are used to achieve a regularized unfolded spectrum: Iterative

Bayesian Unfolding [20] and SVD Unfolding [21].

The Iterative Bayesian Unfolding procedure is due to D’Agostini and is a widely used

approach in the high energy physics community. It is motivated by Bayes theorem and

requires a prior guess of the solution which is usually taken to be the Monte Carlo truth

or a flat distribution. The initial estimate is then updated via an iterative algorithm to

derive the probabilities that a given reconstructed event originated in a true bin at k + 1.

If the procedure is stopped after the first iteration, the resulting spectrum is maximally

biased towards the initial estimate. If sufficient iterations are performed, the solution will

eventually converge to the matrix inversion solution which contains large variances. In
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between, the solution will contain a non-zero bias with smaller variance. The regularization

parameter is taken to be the number of iterations undertaken. The iterative solution for

the unfolded spectrum is,

uk+1
α =

1

εα

∑

i

P (Generated in α|Reconstructed in i) (6.8)

=
1

εα

∑

i

[
P (Reconstructed in i|Generated in α)P (Generated in α)

P (Reconstructed in i)

]
(6.9)

=
1

εα

∑

i

[
Aiαu

k
α∑

β Aiαu
k
β

]
di, (6.10)

where the response matrix Aiα is the probability that the event generated in truth bin α is

reconstructed in bin i.

The SVD Unfolding procedure is mathematically a form of Tikhonov regularization

where a penalty term of strength τ is added to Equation 6.7 to penalize physically implau-

sible solutions for the unfolded spectrum u. The derivation can be found in [21]. The exact

solution given in Equation 6.6 is replaced with a regularized solution such that,

uα = tα
∑

k

∑

β=1

C−1
αβV

′
βk

d̂ks
′
k

s′2k + τ
, (6.11)

where k runs over the data spectrum bins, s′k represents the singular values of A after a

scaling and rotation procedure, and d has been transformed to d̂ which has a covariance

matrix equal to the unit matrix. The regularization parameter τ has the effect of allowing

for small or zero singular values. Its effects are often likened to a cutoff for a low-pass filter,

regularizing the singular effects of small si.

The regularization strength is chosen based on three criteria. First, the unfolded spectra

must have as small variance as possible. Second, it must give a bias consistent with zero

on the unfolded spectra. Finally, the MiniBooNE data must be consistent with a single

experiment drawn from a distribution with expectation value equal to the refolded solution.

6.2.3 Electron-like LEE Signal Model

The electron-like signal model is assumed to originate from an energy-dependent modifica-

tion to the rate of intrinsic νe charge current interactions and hypothesized to come from
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a combination of modified cross-section or flux. While not well motived from a theoretical

stand point it provides a simple model to test the MicroBooNE sensitivity to an electron-

like low energy excess. Under this hypothesis, the MiniBooNE LEE is interpreted as an

excess of νe events above a background of intrinsic νe events and is shown in Fig. 6.1 after

subtracting off the other non-intrinsic backgrounds.
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Figure 2: The MiniBooNE low-energy excess (observed MiniBooNE data minus total background prediction
in MiniBooNE), compared to absolutely normalized MiniBooNE MC-predicted backgrounds originating from
intrinsic ⌫e only ( left) and NC resonant � production and subsequent radiative decay ( right), with the
remaining backgrounds subtracted o↵. Error bars indicate full statistical uncertainties on observed data and
MC statistical uncertainties are included as gray shaded region. It is the black data points that are the
starting point for the unfolding. By assuming these explicit backgrounds (left/right) as the LEE source, the
black points are then assumed to be the result of an increase in underlying green/tan spectra respectively. The
unfolding procedure followed in this analysis aims at determining this increase quantitatively, as a function
of some MC-truth variable for each exclusive source sample (intrinsic ⌫e CC/NC � ! N�).

be the reconstructed neutrino energy assuming quasi elastic scattering, EQE
⌫ , under the electron hypothesis,

which is defined as

EQE =
mNEvis � 1

2m2
e

mN � Evis +
p

E2
vis � m2

e cos ✓
⇡ mNEvis

mN � Evis(1 � cos ✓)
, (20)

where mN is the mass of the struck nucleon, Evis and cos ✓ are the total visible energy and angle of a
reconstructed electron-like Cherenkov cone. The true neutrino spectrum and reconstructed spectrum after
CCQE event selection are provided in Fig. 3 alongside the associated response matrix A and true neutrino
energy dependent e�ciency.

9

Figure 6.1: The MiniBooNE low energy excess (MiniBooNE data minus predicted back-

ground) compared to the absolutely normalized MiniBooNE MC-predicted background

originating from intrinsic νe events. Statistical uncertainties are shown on the data and

MC predictions as the black bars and gray shaded region respectively.

The true underlying energy spectrum is defined as the parent νe energy. The recon-

structed variable is taken to be the reconstructed CCQE neutrino energy, EQE ,

EQE =
mNEvis − 0.5m2

e

mN − Evis +
√
E2

vis −m2
e cos θ

, (6.12)

where mN is the mass of the nucleon, and Evis and cos θ are the total energy and angle of

the reconstructed electron. The true neutrino energy and reconstructed energy spectrum

after the MiniBooNE CCQE event selection are shown in Fig. 6.2 alongside the response

matrix A.

In the low energy excess region approximately 10% efficiency is observed. The response
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Figure 3: Left: True underlying intrinsic ⌫e CC (t↵, in blue) and reconstructed ⌫e CCQE event distributions
in MiniBooNE, after reconstruction and MiniBooNE CCQE selection (ri, in green), as functions of true
neutrino energy E⌫ and reconstructed EQE

⌫ , respectively. Shown also is the combined detector, reconstruction,
and ⌫e CCQE selection e�ciency in the bottom panel, as a function of true neutrino energy, E⌫ . Note that
below 200 MeV in true neutrino energy, no events pass the ⌫e CCQE selection leading to a 0% e�ciency.
This means one cannot unfold to below 200 MeV in true neutrino energy. Right: The response matrix
constructed such that it folds the Monte Carlo truth to Monte Carlo reconstructed variables as shown in the
left, i.e. r = At. The z color scale represents the conditional probability.

4 Photon-like Model: Enhanced rate of NC � resonance with
subsequent radiative decay

In this model it is assumed that the MiniBooNE LEE is solely due to an increased rate of resonant
production of �’s (�± or �0) with subsequent radiative decay. The vast majority of events that pass the
MiniBooNE CCQE selection cuts are NC �0 events, with only 0.2% of radiative events being CC �± pro-
duction. Kinematically, resonant � production with subsequent radiative decay is very close spectrally to
the LEE signal, as can be seen in Figure 1. Although constrained by electron scattering measurements,
radiative decay of �’s from resonant scattering in the neutrino sector has never been directly measured and
is the primary photon-like candidate that could explain the MiniBooNE LEE. The true underlying signal is
defined as a function of the parent ⌫ energy assuming NC � resonant interaction and subsequent radiative
decay. The reconstructed variable is taken to be the reconstructed neutrino energy assuming CCQE scat-
tering, EQE

⌫ 20 as defined above, taking the photon energy as the electron energy.

In Figure 4, the true and reconstructed spectra for NC � ! N� in MiniBooNE are plotted alongside
the associated response matrix mapping between them. As can been seen, the response matrix is highly
o↵-diagonal, even more so that the case of the intrinsic ⌫e CC model signal. In fact, the combined detector
and CCQE selection e�ciency is approximately energy independent, as seen in the bottom panel of the
figure on the left. Thus, neutrinos of all energies that interact via NC scattering to produce a � are equally
likely to produce a photon that is subsequently mis-identified as an electron in the MiniBooNE detector.

10

Figure 6.2: Left : True neutrino distribution of intrinsic νe events before (blue) and after

(green) reconstruction in MiniBooNE. The combined reconstruction and CCQE selection

efficiency is shown in the bottom plot. No MiniBooNE MC events are simulated below 200

MeV. Right : The response matrix constructed from the MC truth and reconstructed energy

variables. The z scale corresponds to the probability.

matrix shows the smearing of the true neutrino energy into reconstructed energy bins. The

unfolding procedure is then applied given the response matrix and is shown in Fig. 6.3.

The unfolded MiniBooNE spectra shows a strong energy dependence below 600 MeV of

true neutrino energy. A factor of 5 increase in the intrinsic νe rate is required to reproduce

the observed MiniBooNE low energy excess under the electron model. Three iterations of

the D’Agostini method are used such that the bias is consistent with zero. As a cross check

the SVD Unfolding algorithm is applied and is shown in Fig. 6.4 for the updated 12.84×1020

MiniBooNE neutrino data [4].

The official signal weights used for the electron-like low energy excess search by Mi-

croBooNE are shown in Fig. 6.5 and represent the factor by which the intrinsic νe charge

current rate should be scaled to produce the expected signal.
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Figure 5: Results of unfolding the MiniBooNE LEE under both the electron-like intrinsic ⌫e CC hypoth-
esis ( left) and photon-like increased NC resonant � production, with subsequent radiative decay hypothesis
( right), both obtained using the D’Agostini iterative unfolding algorithm. The unfolded spectra itself, as
well as the MiniBooNE Monte Carlo spectrum, t↵, are plotted in both cases indicating the energy dependent
increase necessary to account for the observed MiniBooNE LEE, highlighted by the ratio of these which is
shown below.

As a cross-check, the results of unfolding the electron-like model using the alternative SVD unfolding
approach is shown alongside the D’Agostini’s iterative method in Fig. 6. As can be seen, these distinct
algorithms give strikingly similar central value predictions for the unfolded ratio.

As mentioned above, the unfolding cannot be continued below 200 MeV in true neutrino energy as the
combined e↵ect of detector, reconstruction and ⌫e CCQE analysis selections leads to a 0% MiniBooNE e�-
ciency below this. A 0% e�ciency means that any number of true events below this is equally consistent with
the MiniBooNE observation, thus any extrapolation below this cuto↵ energy would have infinite uncertainty
and give no additional information. The main reason for this drop in e�ciency is a 140 MeV cut applied to
the visible energy of the reconstructed EM shower, as well as the lowest energy bin in reconstructed energy
being at 200 MeV reconstructed EQE

⌫ .

The models presented here are the first and prerequisite step in quantifying the level at which MicroBooNE
can determine or exclude the origin of the MiniBooNE LEE anomaly. These models, as well as any other
hypothesis that one may want to consider, can then be imported into MicroBooNE by rescaling the rate of
intrinsic ⌫e CC events or rate of NC � ! N� events in the MicroBooNE Monte Carlo, allowing for their
direct inclusion in MicroBooNE analyses.

12

6.46e20 POT

Figure 6.3: Top: MiniBooNE unfolded intrinsic νe spectra (red) overlaid on the nominal

predicted MC. The unfolded spectrum lies exclusively below 600 MeV in true neutrino

energy. Bottom: Ratio of the unfolded to the nominal intrinsic νe spectrum with statistical

uncertainties only.

12.84e20 POT

Figure 6.4: Combined ratio of the unfolded to the nominal intrinsic νe spectrum from

D’Agostini’s (purple) and SVD (black) unfolding techniques for the 12.84 × 1020 POT

MiniBooNE dataset.
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Figure 6.5: The ratio of the MiniBooNE unfolded electron-like LEE model to the intrinsic

νe event rate in MicroBooNE as a function of true neutrino energy.
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Chapter 7

1 Lepton 1 Proton (1L1P)

Neutrino Topology

This chapter will describe the 1 lepton and 1 proton (1L1P) final state topology selected to

probe the MiniBooNE electron-like low energy excess. The motivation, and reconstruction

and analysis advantages, of the 1L1P topology are discussed. The event rate expectation

in MicroBooNE for 13.2 × 1020 POT is detailed and the unfolded LEE prediction derived

in Chapter 6 is applied. An estimate for expected 1e1P content of the LEE is presented.

7.1 1L1P Signature

7.1.1 Motivation

The majority of the MiniBooNE low energy excess is concentrated in the 200 to 600 MeV

true electron neutrino energy range. In this regime the neutrino cross section is dominated

by charged current quasi-elastic (CCQE) scattering as shown in Fig. 7.1 (from [22]) and

defined for an incident neutrino as,

ν + n→ l− + p. (7.1)

In MicroBooNE the neutrino, ν, is primarily of muon or electron neutrino flavor and the out-

going lepton will be either muon or electron. The targets are not free nucleons but rather

argon nuclei. The assumption that the neutrino scattering is CCQE remains valid if the
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energy and momentum transfer are large enough to which interaction occurs on individual

nucleons. Fermi-motion, binding energy, final state interactions, and other nuclear effects

can cause deviations in the final state kinematics away from those expected in free nucleon

CCQE interactions.
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FIG. 9 Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figures 28, 11, and 12 with the inclusion of additional lower energy
CC inclusive data from N (Baker et al., 1982), ⇤ (Baranov et al., 1979), ⌅ (Ciampolillo et al., 1979), and ? (Nakajima et al.,
2011). Also shown are the various contributing processes that will be investigated in the remaining sections of this review.
These contributions include quasi-elastic scattering (dashed), resonance production (dot-dash), and deep inelastic scattering
(dotted). Example predictions for each are provided by the NUANCE generator (Casper, 2002). Note that the quasi-elastic
scattering data and predictions have been averaged over neutron and proton targets and hence have been divided by a factor
of two for the purposes of this plot.

Figure 7.1: Neutrino charged current cross section per nucleon divided by neutrino energy

as a function of true neutrino energy. In the low energy region below 600 MeV, neutrinos

primarily scatter through a quasi-elastic process.

Assuming both the final state electron and proton exit the nucleus, a CCQE interaction

in liquid argon features a two prong topology. At the neutrino scattering point two charged

particles are emitted, a lepton and a proton. This analysis focuses on identifying generic

two prong neutrino topologies, called one lepton one proton (1L1P), to identify low energy

CCQE events to investigate the MiniBooNE low energy excess. Electron neutrinos are the

primary signal of interest while muon neutrino interactions will be used to constrain the

systematic uncertainties on the electron neutrino normalization.

7.1.2 Topology

The 1L1P exclusive interaction channel is chosen due to its unique experimental signature

in LArTPCs and its high CCQE content in the energy regime of the low energy excess.

The 1L1P topology is defined as single lepton and proton in the final state above an energy

threshold and contained inside the MicroBooNE TPC. For 1L1P electron neutrino interac-

tions, the lepton emitted is an electron and is called “1e1P”. Muon neutrino interactions
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feature a muon and are called “1µ1P”. Examples of 1e1P and 1µ1P events are shown in

Fig. 7.2.
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Figure 7.2: U, V, and Y plane projections of 1L1P event topologies represented as 2D

images. Top: Example of a 1e1P event in MicroBooNE, where a single proton and electron

are produced. Bottom: Example of a 1µ1P event, where a single muon and proton are

produced.

The lepton is used to identify the neutrino flavor. An energy threshold for the lepton

and proton particles is applied to ensure a visible ionization pattern in the event. In this

analysis, an event is represented by three 2-dimensional images (one per plane) as described

in Chapter 8. An energy threshold of 35 MeV is required of the lepton and 60 MeV for

the proton and are applied to ensure a two prong feature is observable in the image. For

leptons the 35 MeV requirement is reasonable as both the muon and electron will travel

appreciable distance in liquid argon at this energy. A 60 MeV requirement on the proton

is motivated by visibility of ionization. The distance traveled by protons in liquid argon as

a function of kinetic energy is shown in Fig. 7.3.

When a proton decreases below 6 wires in length (1.8 cm) on any one plane the ability
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Figure 7.3: Proton range in liquid argon as a function of initial proton kinetic energy. A 60

MeV proton in a 1e1P interaction traverses a distance of approximately 4 centimeters.

to reconstruct a track becomes challenging. Assuming a proton spans 6 wires in length on

an induction plane, the corresponding length on the collection plane is 12, or 3.6 cm. A

proton track of approximately 4 cm in length corresponds to a proton of 60 MeV kinetic

energy. A 60 MeV threshold is set such that the proton spans will span at least 6 wires in

its shortest projection. Additionally, any number protons below 60 MeV are allowed in the

interaction as they may be invisible. An auxiliary reason to require a visible proton is to

reduce the potential for mis-identification with other neutrino channels and cosmic rays. If

the proton requirement is removed for the 1µ1P case (1µ0P), the single muon emitted from

the neutrino interaction must be distinguished from a fierce cosmic ray muon background.

For 1e1P events with no proton (1e0P) a single electron must be distinguished against

particles produced in cosmic ray showers, and from photon backgrounds such as in neutral

current π0 and radiative ∆ decay where two showers must be identified. The 1e1P topology

has the powerful feature of an electron and proton connected at a single point which can

be used to reject these types of backgrounds.

The multiplicity and energy thresholds required of the final state topology restrict the

fraction of CC neutrino events which can be identified. Fig. 7.4 shows the fraction νe CC

events which feature a 1e0P (1 electron 0 protons), 1e1P, or 1eNP (1 electron N protons)

topology at the generator level.

No other particles such charged or neutral pions are produced in the interaction. In
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Figure 7.4: Fraction of charged current events which feature a 1e0P (blue), 1e1P (green),

or 1eNP (red) final state topology as a function of true neutrino energy.

the lowest energy bin, [0,200] MeV, approximately 90% of CC inclusive interactions feature

a single electron in the final state. In the LEE signal region, between [200,600] MeV,

approximately 40% of events are 1e1P. As the true neutrino energy increases, the number

of 1e1P events decreases as events with more than one proton, and charged and neutral

pions begin to dominate.

The 1e1P topological requirement is a restriction on the visible final state particles

rather than a demand on the CCQE interaction channel. The fraction of intrinsic νe events

per scattering channel which appear as a subset of the signal topology as shown in Fig. 7.5.

Two primary interaction channels are observed in the [200,600] MeV region, CCQE

and meson exchange currents (MEC). MEC interactions, considered a 2 particle 2 hole

effect, are characterized by 2-nucleon emission from the scattering vertex, instead of single

nucleon emission as in CCQE interactions. The default GENIE model includes MEC using

the “empirical”, or Dytman, model [23] which is data driven and includes both charged and

neutral currents. 1e1P MEC interactions produce an electron with one proton above the 60

MeV threshold and one proton below. In the low energy region, MEC and CCQE events

account for approximately 40% and 60% of interactions respectively. Uncertainty on the

MEC model is discussed in Chapter 10. Above 1 GeV, resonant and deep inelastic charged

current events become more prevalent. In these cases the final state pions and protons are

absorbed by the nucleus such that only a single visible electron and proton are visible.
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Figure 7.5: Fraction of 1e1P events per true neutrino energy bin which are CCQE (blue),

MEC (orange), or other CC (green, red, purple, brown).

7.1.3 MicroBooNE Event Rate

The intrinsic electron and muon neutrino event rate at MicroBooNE for 13.2 × 1020 POT

is shown in Fig. 7.6.
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Figure 7.6: Muon (left) and electron (right) neutrino stacked event rate for 13.2 × 1020

POT in MicroBooNE for neutrinos contained inside the active volume. The blue distribution

shows the 1L1P event rate, the green and red distributions show the rate for neutral current

and charge current non 1L1P events respectively.

The event rate is calculated using the GENIE [24] (version 2.12.0) neutrino interaction

generator along with the BNB neutrino mode flux outlined in Chapter 4. In the prediction,
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neutrino interactions are required to scatter inside the TPC active volume such that the

interaction is visible in the event image. Neutrino events which occur in the cryostat

are not considered. Three modes are shown in Fig. 7.6 in a stacked histogram. The blue

distribution shows the 1L1P event rate as a function of true neutrino energy. Approximately

875 events intrinsic 1e1P events are expected over the full energy range. The green and red

distributions represent neutral current (NC) and charge current (CC) events which are not

1L1P.

7.2 LEE Signal Prediction

An estimate of the electron-like LEE event rate can be made by applying the unfolded Mini-

BooNE weights. The signal model is the same as detailed in Chapter 6 and is interpreted as

an increase the intrinsic νe flux or cross section. The weights as a function of true neutrino

energy are shown in Fig. 6.4 and are applied to intrinsic νe CC events to form the LEE

electron-like rate expectation for 13.2×1020 POT in MicroBooNE. The event rate is shown

in shown in Fig. 7.7 in 100 MeV energy bins below 1 GeV.
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Figure 7.7: LEE signal model (gray) stacked on the 1e1P (blue), NC (green), and CC non

1e1P (red) rate expectations for 13.2e20 POT in MicroBooNE.

Below 800 MeV approximately 654 LEE events are expected of all CC-type interactions,

including 1e1p. The CC (red) and NC (green) distributions do not exhibit the 1e1P topology

and will be significantly vetoed in the reconstruction and analysis detailed in this thesis. The
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1e1P backgrounds to the LEE search are irreducible and are shown in Fig. 7.8. The 1e1P

component of the LEE electron-like signal is shown in the gray distribution and represents

192 events over an expected 233 background for 13.2× 1020 POT.
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Figure 7.8: The 1e1P component of the LEE signal (gray) stacked on the 1e1P (blue) rate

expectation for 13.2× 1020 POT in MicroBooNE.
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Chapter 8

Image Based Neutrino

Reconstruction

This chapter describes the automated event reconstruction scheme developed to identify

1e1P and 1µ1P neutrino interactions in the MicroBooNE detector using TPC and optical

data. A novel approach using image based reconstruction techniques is applied to detector

data prepared in the form of a 2-dimensional image. Both traditional and deep learning com-

puter vision algorithms are developed for neutrino reconstruction. The event reconstruction

chain extracts features in LArTPC images for neutrino detection, daughter particle identifi-

cation, flavor identification, and momentum determination. After an event is reconstructed

both neutrino and background interactions are found in the event. While the reconstruction

chain finds neutrino interactions with good efficiency, the neutrino interaction must be dis-

criminated against other backgrounds reconstructed on cosmic ray muons and potentially

detector noise. The neutrino selection is described in Chapter 9. An example of the output

of the reconstruction chain for 1µ1P and 1e1P and cosmic background interactions before

selection are shown in Fig. 8.1.

Section 8.1 describes how the LArTPC image is formed from the TPC wire signals and

Section 8.2 provides a complete overview of the full image based reconstruction chain. The

reader is referred to Sections 8.3 through 8.9 for comprehensive details of reconstruction

software components.



CHAPTER 8. IMAGE BASED NEUTRINO RECONSTRUCTION 50

8

The Method
• Crop square a region centered around reconstructed vertex 

‣ Focus only in small region where 1e1p interaction exists 
- 400x400 pixels (120 cm) 

‣ Vertex is at center 
‣ Electron & proton charge deposition “fit” inside the image 

• Procedure 
‣ Tag cosmics entering from the edge of the image 
‣ Identify a line — proton 
‣ Identify a tree — electron

U

Enu = 225 MeV 
Edep Proton: 50 MeV 
Edep Electron: 174 MeV

Y

Ti
m
e

Wire

V
Example ROI

vgenty

1e1P

e-

p

Cosmic Ray Muon Decay

e-µ-
Dead Wires

1µ1P

µ-

p

µ-

Noise

Noise Waveform

Dead Wires

Figure 8.1: Example output of the image based reconstruction chain after 3D vertexing

finding for four different types of candidate vertices (yellow star). The neutrino interaction

location is identified for 1e1P and 1µ1P (top row) events along with a number of potential

sources of backgrounds (bottom row) including false vertices found on cosmic rays and noise

waveforms. The reconstructed particle clusters exiting the vertex are analyzed to determine

consistency with electron, muon, and proton particles.

8.1 Pixelized LArTPC Data Representation

The event based reconstruction scheme described in this chapter involves MicroBooNE

detector TPC data expressed as an image, called a LArTPC image. The two axes of an

image are the wire number and readout time. The Z dimension moves across the detector,

upstream to downstream in the neutrino beam direction, while the Y dimension is a proxy

for the X direction axis. One image per wire plane is formed by filling each column with

the digitized waveforms from each wire. In such images, one pixel corresponds to 0.55 mm

along the time axis given the measured drift velocity of 0.11 cm/µs [25]. The pixel values of

the image represent the ADC charge on the wire at the given time tick after noise-filtering
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and signal deconvolution. This scheme produces high resolution images for each wire plane

with full charge resolution. In this analysis, the LArTPC image is compressed in the time

dimension by a factor of 6 by summing adjacent pixels. The compression factor is chosen

to normalize the X (wire) and Y (time) dimensions such that they represent approximately

the same physical scale. Each pixel represents an approximately 0.3 cm square projection.

The down sampled image is physically smaller which is beneficial for persistent storage and

for development of pattern recognition algorithms described in the coming sections.

Three LArTPC images are formed per event with the U and V induction planes carrying

an image dimension of size 2400 x 1600 pixels and the Y collection plane of size 3456 x 1600

pixels. The charge information is stored in a 4 byte floating point pixel value. Images are

stored on disk using the ROOT [26] file format using a custom developed software and image

representation called Liquid Argon Computer Vision (LArCV) [27]. The LArCV software is

integrated into the MicroBooNE production pipeline allowing for both real and simulated

data to be converted to the appropriate image format for analysis. Two representations

of LArTPC images are used in this chapter. The first image representation is called the

LArCV image which contains the down sampled image as described above. This image is

used in persistent storage and for interfacing with Convolutional Neural Network (CNN)

frameworks to extract machine learned features. The second type of image is called a

Liquid Argon Open-source Computer Vision (LArOpenCV) [28] image. An LArOpenCV

image is a gray scale representation of the LArCV image and is encoded in a compressed

data structure where the pixel value is encoded in a single byte. The conversion between

the LArCV and LArOpenCV image is done by thresholding the LArCV image at 10 pixel

count, and assigning pixel values larger than 1 byte to 255, effectively compressing the

charge information. The LArOpenCV image allows for interfacing with the Open-source

Computer Vision (OpenCV) [29] library as they share a common image data structure. This

image is primarily used for application of custom traditional computer vision techniques to

extract hand-designed features.
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8.2 Summary of Image Based Reconstruction

In this section an overview of the reconstruction chain developed to identify 1L1P events in

LArTPC images is presented for readability. An extended description of the methodology of

the reconstruction algorithms and a profiling of the reconstruction performance are detailed

in the following sections.

PMT Precuts - Section 8.3

Event images in MicroBooNE can be complex, with on average 15 particles, mostly

muons, crossing the detector along with the potential presence of a neutrino interaction.

An example full resolution LArTPC event image, from MicroBooNE, of the collection plane

is shown in Fig. 8.2.

Y

Figure 8.2: Example LArTPC data image of raw signal from MicroBooNE’s collection plane.

Cosmic muons are observed traversing the detector. Event comes from EXT-BNB trigger.

No analysis selection is applied to select this event.

In this image, cosmic ray muons can be seen traversing the detector volume while the rest

of the image is empty. Sifting through the charge depositions in the image for the neutrino
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interaction is challenging because of the high cosmic ray rate due to MicroBooNE’s position

on the Earth’s surface. In MicroBooNE, the expected cosmic to cosmic and neutrino event

ratio is approximately 600 to 1. After applying the software trigger [30] that looks for

scintillation light coincident with the expected beam window, this ratio is around 30 to

1. This means on average there will be approximately 450 cosmic muons per neutrino

interaction.

To reduce the reconstruction load for TPC based 1L1P reconstruction an optical fil-

ter, called the PMT precuts, is designed to remove events with no likely neutrino flash.

The precuts reject events with light in the beam spill window that are due to low energy

backgrounds as well as some additional cosmic ray activity not removed via the software

trigger. Cosmic ray tracks themselves are difficult to isolate using only optical information

and are removed using features derived from downstream pattern recognition algorithms.

After applying the PMT precuts, an additional 75% of cosmic ray only events are rejected.

When applied to neutrino events the precuts are approximately 97% efficient for retaining

νµ and νe CCQE interactions.

Cosmic Ray Tagging and Contained Region of Interest - Section 8.4

With the cosmic only image rate reduced, a pixel level tagging algorithm is designed to

identify cosmic ray trajectories in the image. This TPC based reconstruction algorithm is

called the cosmic tagger, and used to identify two classes of cosmic ray tracks: through-

going muons, and stopping muons. An illustration of the three types of objects found in

the event image are shown in Fig. 8.3.

Reconstructing cosmic rays before applying neutrino finding algorithms is simpler for

two reasons. First, cosmic rays trajectories are predominantly long straight tracks and have

a simple topology in a LArTPC image. Secondly, additional feature information is available

from the TPC and optical system for particles which interact with the detector boundaries.

To identify the two classes of cosmic ray tracks, the boundary points at the six detector

faces are reconstructed. Each boundary point has a unique signature which can be identified

using a combination of the spatial location of TPC and optical signal.

Through-going cosmic ray muons will cross the boundary of the active region of the
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Figure 8.3: Three classes of pixel type reconstructed by the cosmic ray tagger. Through-

going muons enter and exit the TPC boundary, stopping muons enter the TPC and stop

inside, and contained objects whose cluster is completely contained within then TPC bound-

aries.

detector twice, at an entering and exit point, then follow a path that is fairly close to a

straight line. A two stage 3D tracking algorithm is developed to follow pair-wise combi-

nations of boundary points through the detector. If the tracking algorithm connects one

boundary point to the other while following pixels in the image, a through-going muon is

identified.

Stopping muons are reconstructed by following typically a curved path (due to multi-

ple coulomb scattering) of charge from exactly one point on the TPC boundary into the

detector. The 3D tracking algorithm follows the track from the detector boundary into

the TPC until a termination point is identified. A neutrino event, particularly high energy

1µ1P events, may have exiting particles and will have pixels that cross a boundary. In that

case, the neutrino event will be tagged with the same flag as a stopping particle. Additional
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pattern recognition of stopping particle pixels is required to determine the tracks origin as

either cosmic or neutrino induced.

With through-going and stopping muon tracks identified, the remaining charge depo-

sition in the image should not cross the detector boundary and are labelled as contained.

Contained charge may be debris from entering neutral particles of cosmic origin or may

be neutrino interactions. Tagging cosmic ray tracks simplifies the image for pattern recog-

nition of contained charge. In this reconstruction, tagged through-going muon pixels are

removed from the event image before the neutrino interaction reconstruction step. The

stopping muon tracking algorithm is turned off. In simulated events of CORSIKA [31] cos-

mic rays an average of 75% of cosmic ray pixels are tagged. Given perfect boundary point

reconstruction, an average of 90% of cosmic pixels can be tagged.

Due to the large size of a LArTPC image an algorithm is used to isolate a contained

region of interest, or cROI, where the neutrino interaction is likely to occur. The in-time

optical flash is used to set the spatial location of the cROI to reduce the search region for

the neutrino interaction. The size of the cROI corresponds to approximately one third the

size of the event image. On a sample of simulated neutrino events, the efficiency for placing

the cROI on the image which covers the neutrino interaction is 95%. Inside the cROI, a

hybrid of traditional and deep learning algorithms are applied to reconstruct the neutrino

interaction.

An example output of the cosmic ray tagging and cROI finding algorithm is shown for

an example MC intrinsic νe with CORSIKA cosmic rays in Fig. 8.17.
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Figure 8.4: Output of the cosmic ray tagging and cROI finding algorithm. Three objects

are identified: through-going muon tracks (yellow), stopping muon tracks (pink), and a

contained region of interest (blue) to search for a neutrino interaction.
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Track and Shower Pixel Tagging using Semantic Segmentation - Section 8.5

To identify the presence of a 1L1P neutrino interaction in the cROI, a proton, and either

a muon or electron particle must be identified having topological and kinematic features

consistent with neutrino scattering. To aid in the reconstruction of the neutrino scattering

point and provide a useful feature for particle identification, a deep learning based algorithm

is developed to identify track and shower pixels. Two particle topologies, like 1L1P, are

composed of two basic LArTPC features: the presence of two track particles in the case of

1µ1P or the presence of a single track and shower particle in the case of 1e1P. Tracks and

showers are defined by their unique ionization pattern. Tracks are LArTPC image features

consisting primarily of lines left behind by heavy charged particles that travel through the

detector such as muons, pions, and protons. Shower topologies consist of a collection of

branching features which are produced when electrons propagate through the detector and

initiate an electromagnetic cascade of particles. Distinguishing between track and shower

topologies is the simplest form of high level particle identification, and can be a powerful

discriminant to distinguish between electron and muon neutrino interactions in LArTPC

detectors. Additionally, track and shower pixel labelling enables a more efficient search for

the 3D neutrino interaction vertex as assumptions can be made about the nature of pixels

being used for pattern recognition.

A deep neural network has been trained for a semantic segmentation task, called SS-

Net [8]. The SSNet deep learning algorithm is applied inside the cROI and assigns a score of

being track-like or shower-like to every pixel. An example of input and output to the SSNet

is shown in Fig. 8.5. A pixel-wise classification, called semantic segmentation, provides a

novel algorithm for identifying shower particle features which originate from a stochastic

nature of shower evolution. When applied to images of low energy 1L1P events, the SSNet

shows good performance at pixel classification. On average, 2.3% and 3.9% of charge car-

rying pixels are mis-classified for low energy 1µ1P and 1e1P events respectively.

Vertex Finding and Particle Clustering - Section 8.6

Vertex activity is an evidence of neutrino scattering activity in liquid argon detectors.

The vertex is the detector location where the neutrino scatters off an argon nucleus and
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Figure 8.5: Example 1µ1P and 1e1P SSNet input (top) and output (bottom). A LArCV

image containing the particle ionization pattern, called an ADC image is used as input to

SSNet. The network outputs an image of the same spatial dimension with track (yellow)

and shower (cyan) pixels labelled.

where electron, muon, and proton neutrino daughter particles begin their ionization trajec-

tory. This reconstruction step searches for the 3D vertex and clusters pixels belonging to

individual particles inside the cROI.

In 1L1P scattering two particles are emitted from the interaction point. Both electron

and muon particles will be physically connected to a proton at a vertex. The particles form

a “vee” shape, or an angular feature between the lepton and proton projected trajectories.

The vertex algorithm searches for a coincident vee shape across two or more planes to

claim a 3D consistent vertex candidate. Two separate vertexing algorithms are used to

find vertices for two track, called a track vertex, and for one track one shower, called a

track-shower vertex, topologies.

Track vertex reconstruction is applied to track pixels labelled by the SSNet and identifies

the vertex for 1µ1P interactions. Both the muon and proton are particles which feature

track, or straight line, features in a LArTPC image. To locate the 3D vertex, 2D vertex

“seeds” are identified on each plane using a kink finding algorithm. In each plane image

a collection of vertex seeds are found using a suite of traditional image reconstruction

techniques which may represent 3D projections of a 3D vertex. The set of 2D vertex seeds
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is reduced by executing an exhaustive scan of pixels locally around each seed to best locate

the kink point as a function of time tick using a template feature which minimizes the

angular deviation, called the angular metric, of tracks exiting a circle. The time profile

of the angular deviation of tracks is compared across the 3 wire planes to determine the

presence of a coincident kink point. A minimizer is then used to scan the time profile

and locate candidate 3D vertex points. The X position of the vertex is determined from

the time coordinate, and the Y and Z positions are determined from the coincidence of

wires between planes. When applied to 1µ1P events, vertexing finding is approximately

60% efficient at locating the true neutrino vertex with 68% of vertices being reconstructed

within 0.9 centimeter of the true interaction vertex.

Track-shower vertex finding is applied to the combination of track and shower labelled

pixels by SSNet and is used to identify 1e1P interactions. Applying the track vertex al-

gorithm to the combined track and shower image would not be productive as the typical

electron features an electromagnetic cascade containing many kink points which could fake

a candidate vertex location. The track-shower vertex algorithm locates the presence of a

shower on a track edge. The track edge point is then correlated across planes. If a 3D

correlation exists, a grid search is applied to a defined 3D region around the edge point.

The angular metric is minimized across planes to determine the optimal candidate loca-

tion. The X, Y, and Z coordinates are determined following the same procedure as in the

track vertex case. When applied to 1e1P events, vertexing finding is approximately 53%

efficient at locating the true neutrino vertex with 68% of vertices being reconstructed within

1 centimeter of the true interaction vertex.

The output of the algorithm for track and track-shower vertex finding is shown in Fig. 8.6

as applied to an example 1µ1P and 1e1P event.

Finally, each outgoing particle is clustered uniquely by an algorithm for downstream

analysis. The complexity of particle clustering is reduced as each particle is assumed to

originate from the candidate vertex location. Particles clustered at the vertex are matched

across planes to determine 3D consistency. At least 1 particle must be matched across

planes to claim a candidate vertex.
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Figure 8.6: Example of vertex finding applied to an example 1µ1P (top) and 1e1P event

(bottom). Top: A vertex is found (cyan star) close to the true vertex (yellow star) in

the track only image (black pixels). Bottom: A track-vertex is found (green star) at the

interface between track (yellow) and shower (cyan) pixels.

1µ1P Reconstruction - Section 8.7

A tracking algorithm based on a stochastic search is used to determine the 3D trajecto-

ries of particles produced in 1µ1P interactions. The algorithm steps in 3D starting at the

vertex point along a consistent path of charge until a particle’s end point is reached. An

example of the algorithm applied to a 1µ1P interaction is shown in Fig. 8.7.

The reconstructed trajectory of a track provides a measurement of a particle’s 3D length

as well as an understanding of a particle’s scattering profile which can be used for pattern

recognition. For contained muon and proton particles the 3D length can be translated into

a kinetic energy which can then be used to estimate the neutrino energy of the interaction.

A range based energy estimation method avoids calibration of the energy scale using the
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⌫ of 993.4 MeV.
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Figure 8.7: Tracking algorithm as applied to a 1µ1P interaction. The left column shown

the three planes event view. The right column shows the output of the tracking algorithm.

Two tracks, green and red, have been reconstructed.
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detector calorimetry. Additionally, particle dE/dx and kinematics can provide features for

daughter particle and neutrino identification.

For 1µ1P events the algorithm is 75% efficient at tracking both muon and proton par-

ticles together to near their true end points. An energy resolution of ∼ 3.5% is found for

determining the ranged based energy of the neutrino interaction.

1e1P Reconstruction - Section 8.8

Reconstructing low energy electron neutrino interactions presents a challenge for generic

pattern recognition algorithms developed for LArTPC experiments. As the energy of the

neutrino energy decreases the topological nature of the electron and proton daughter parti-

cles changes. The proton decreases in physical length, and encodes particle ID features, such

as dE/dx, in a smaller number of TPC wires which can challenge 3D tracking algorithms.

The electron particle’s features become increasingly track-like as the electromagnetic cas-

cade decreases in size, which can challenge generic track and shower separation algorithms.

The reconstruction chain after vertex finding, particle clustering, and track reconstruction

is too generic to capture the features present in the low energy 1e1P neutrino topology

based on background discrimination studies. An OpenCV based algorithm, called the 1e1P

algorithm, is developed for reconstructing electron and proton daughter particles from 1e1P

neutrino events after vertex finding.

The algorithm targets less than 600 MeV 1e1P interactions and is applied in a restricted

spatial region, or crop, around the candidate vertex. By working in a crop identifying the

presence of cosmic rays becomes easier, as the boundary crossing points are simple to

locate. In addition, candidate vertices reconstructed on background primarily exit the crop

region and are vetoed. The algorithm provides dedicated pattern recognition for low energy

proton and electron topological features and alleviates some reconstruction inefficiencies

found earlier on in the chain. Features to identify the particle dE/dx and 3D trajectories

are reconstructed. Additionally, a match between the reconstructed particles and the in time

optical flash is developed to correlate TPC activity with the optical system and provide an

additional discriminate against cosmic background.

The 1e1P algorithm provides a method for determining the neutrino energy and kine-
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matics. The neutrino energy is determined using colorimetry information from the collection

plane. For proton and electron particles, the energy resolution is approximately 10 and 20%

respectively. The direction of the proton and electron can be determined with a resolution

of 4 and 5% respectively.

Particle ID Using a Convolutional Neural Network

To characterize the neutrino interaction flavor and channel, the daughter particles must

be identified. Particle identification using a deep learning technique has been shown to work

effectively on LArTPC images of single particles simulated in the MicroBooNE detector

as shown in [7]. In this reconstruction chain, a Convolutional Neural Network (CNN) is

trained to identify five particles coming out of the vertex: e−, γ, µ−, π−, and proton using

a multi-class architecture trained for an image classification task. Called the Multi-PID

network, the network is trained to predict the presence of multiple types of particles in

a single image. This type of network design allows for a candidate neutrino interaction,

defined by the presence of vertex activity, to be used as input to the network. This scheme

removes the need for individual particles to be clustered and processed through a single

particle identification network, where a potential bias could be introduced due to clustering

inefficiencies. The network is used to supplment traditional particle identification algorithms

based on physics principles.

In practice, a cut on the network score is used to claim the presence of a particle type

in the image. For 1e1P and 1µ1P events, the network is capable of identifying the lepton

particle 62% and 42% of the time respectively. The proton particle is the best classified by

the Multi-PID network and is used in analysis to distinguish against neutrino and cosmic

backgrounds.

8.3 PMT Precuts

8.3.1 Algorithm

The algorithm places three cuts on the optical flash, defined as a reconstructed PMT timing

signal, for the event.
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1. Signal requirement

2. Maximum fractional photo-electron (PE) requirement

3. Front porch veto

The signal requirement is applied in the beam spill window defined as an optical flash

at or above 20 PE. This cut eliminates a large fraction of low energy background by single

photo electrons.

The fractional PE requirement requires that no single PMT contains larger than 60%

of the total PE in the event.

The front porch veto eliminates events with a signal in the 130 ticks (∼2 µs) preceding

the beam spill window. The definition of a signal in the front porch is the same as in the

beam spill, since cosmic activity and 1L1P events are expected to deposit similar PE in

the detector. The front porch veto removes events where pre-spill cosmic ray interactions

deposit significant late light or light from Michel electrons as shown in Fig. 8.8. Additionally,

the veto removes events that have more than 1 flash, which can complicate the flash-charge

matching that is used in the region of interest algorithm later in the reconstruction chain.

8.3.2 Efficiency

The 1L1P signal efficiency and cosmic ray event rejection efficiency are optimized by varying

the signal PE threshold and the PMT maximum fraction cut simultaneously. CCQE events

which primarily feature a 1L1P topology are used as a proxy for 1L1P events in this study.

The results are shown for low energy CCQE νµ and externally triggered BNB events in

Fig. 8.9.

Good low energy neutrino efficiency is observed for a PMT maximum fraction cut of 0.5

and above and for a signal cut between 12 and 30 PE. The cut is chosen to remove at least

75% of cosmic ray only backgrounds. The effect of the PMT precuts on νµ and νe CCQE

events as a function of true neutrino energy (Eν) is shown in Fig. 8.10.

For the studies described above, the software trigger was applied to both the νµ and νe

CCQE events and the BNB-EXT data events. A study was performed using an external

unbiased data (EXT-UB) set to check that the software trigger does not bring in additional
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Figure 8.8: The front porch veto applied to a BNB-EXT event. The plot shows the total

number of PE binned in 6 optical ticks (∼90 ns). A muon flash is identified in the pre-beam

window which subsequently decays to an electron inside the beam window.

inefficiency into the PMT precut algorithm. Fig. 8.11 shows the ratio of EXT-UB with

PMT precuts and software trigger to EXT-UB with PMT precuts. The result converges

to 0.996±0.005 before the signal PE threshold of 20 PE. There is negligible (< 0.5%)

inefficiency due to the software trigger, because the PMT precuts impose a more stringent

requirement on the number of PE present in the event.

In summary, the PMT precuts are 97% efficient for νµ CCQE interactions for all Eν and

96% in the 200–600 MeV range. For νe CCQE interactions the algorithm is 98% efficient

for all Eν and 97% in the 200–600 MeV range. The algorithm removes 76% of cosmic ray

only backgrounds.
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Figure 8.9: Efficiency table for νµ CCQE (left) and rejection table for cosmic ray (right)

events. The efficiency is optimized as a function of PMT maximum fraction and PE thresh-

old and are selected (black box) for the given νµ CCQE efficiency and cosmic ray rejection

efficiency.
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Figure 8.10: Effect of applying the PMT precuts to samples of νµ and νe CCQE events as a

function of true neutrino energy. Approximately 97% efficiency is observed in both samples

with little dependence on neutrino energy.
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Figure 8.11: Ratio of the number of events passing both the PMT precut algorithm and

the software trigger to the number of events passing the PMT precut algorithm for external

unbiased data.

8.4 Cosmic Ray Tagging & Contained Region of Interest

8.4.1 Boundary Crossing Reconstruction

To reconstruct through-going and stopping muons, points on the detector boundaries are

identified. Boundary crossings occur at the top, the bottom, the upstream end, the down-

stream end, the cathode plane or the anode plane. Each crossing point is identified using a

unique TPC or optical feature.

Top or Bottom Boundaries

The three wire planes begin or end at the top or the bottom of the detector, spanning

the Y direction coordinate. The intersection of any three wires, one from each plane, rep-

resent uniques points at either the top or bottom. If charge is found at the location where

wires meet then the particle passed through top or bottom boundary as shown in Fig. 8.12

Upstream or Downstream Boundaries

To identify particles crossing the upstream or downstream boundary of the detector the

wires in each plane which are located at minimum and maximum of Z coordinate are used.
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Figure 8.12: Example of a track (red line) crossing the top and bottom of the TPC. Top

and bottom crossing points are identified by a coincident charge deposition on U, V, and Y

wire plane.

As an example, a particle crossing the upstream surface of the detector will deposit charge

on the first wire 0 of the collection plane (Z = 0 cm). The Y coordinate position of the

crossing is determined by the combination of U and V plane wires that also see charge. The

situation is analogous for particles crossing the downstream stream end of the detector,

which will see charge on wire 3455 of the collection plane (Z = 1036 cm).

Anode or Cathode Boundaries

The scintillation light observed by the PMTs indicates the time at which a track passes

through the detector. A track which crosses the anode plane produces a charge cluster

where one end will be in time with the observation of light by the PMTs. For a track that

crosses the cathode plane, one end of the charge cluster will appear to be at the time of

a flash plus one full drift window. The anode and cathode boundaries are identified by

looking for correlations between charge clusters in the image and the flashes of light by the

PMTs. Fig. 8.13 shows an example of a TPC-optical correlation for an anode crossing muon.

The procedure for finding boundary crossing points is straightforward with perfect de-

tector operation. In practice, two challenges introduce inefficiencies in boundary point

reconstruction. First, approximately 10% of the wires in the detector are unresponsive or

produce an unreliable signal. For some portion of the detector boundary, it is not enough

to search for charge on all three wires. In this case, the algorithm looks for charge on two of

the three wire planes and the presence of a bad channel tag for the corresponding wire on
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Optical Flash

Track end point

Figure 8.13: An image of the Y-plane near the end of a stopping muon particle. The lowest

purple line indicates the time of a cluster of PMT hits, called an optical flash. The upper

line is the time of another optical flash plus the a single detector drift time. The track

stops on the lower line and crosses the upper line. This track is consistent with entering or

exiting the anode plane but not the cathode plane.

the remaining wire plane. Secondly, space charge effects [32] will distort where the charge

produced at the boundary will appear to be measured. Due to convection currents in the

liquid argon bulk, we expect that positive argon ions, produced by charged particle tracks

ionizing the detector medium, to concentrate near the middle of the detector. These ions

distort the electric field created by the cathode and anode. Positive charge builds up in the

center of the detector, causing the ionization electrons to drift towards the detector center

in addition to traveling towards the anode wire plane. As a result, the ends of the charge

clusters left by the cosmic track will appear some distance away from their true position

inside the active volume of the detector. The magnitude of the space charge effect varies as

a function of the X detector coordinate. The algorithm which finds the boundary crossing

points takes into account unresponsive wires and space charge effects by carrying an error

tolerance.

The end result of the boundary crossing point algorithms is a list of candidate (x, y, z)

points. The metric used to check the boundary crossing algorithm is by counting the fraction

of MC cosmic muon crossing points that are tagged. Crossing muon points were found by

using the truth information to check the start and endpoints of cosmic muons. If a track
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end was less than 10 cm from active volume boundary the track end is considered a true

crossing point. To be considered tagged, at least one reconstructed boundary crossing point

needs to be identified within 10 cm of the true crossing point. Fig. 8.14 shows the fraction

of true crossing points that are tagged by the algorithm.
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Figure 31: (Left) The number of true crossing points (blue) versus the boundary that was crossed.
This is compared to the number of true crossing points that have a reconstructed bound-
ary point within 10 cm (red). (Right) The fraction of true boundary points with a nearby
reconstruction point. While, the algorithm is identifying most of the boundary crossing
points, it does so by proposing about 1.5 times more points that the number of true
crossing points.

in other parts of the selection chain as well. The description of how it works is found in
Section 17. For now, we simply state that it attempts to connect a start and end point in
3D detector space. It can only do this by finding points in space that, when projected onto
the wire plane images, have charge on that location. For the A⇤ path-finding algorithm, the
images are compressed such that each pixel becomes 4 wires by 24 time ticks (1.2 cm in wire
view and 1.3 cm in time view). This allows for faster searches of the images by reducing
the resolution of the 3D grid. A bad/dead pixel, therefore, now has 4 wires that are failing
to respond. This also causes the charge associated with showers to merge into continuous
charge in many cases. If a path can be formed, then a track candidate is created with a list
of (x, y, z) points from the start to the end. The image is decompressed and the pixels along
the path are tagged as a through-going particle.

We studied the performance of the through-going muon tracking algorithms on cosmic
muon MC. In order to separate issues of the tracker from those of the boundary crossing
point finder, we use the truth information to provide the start and end points of the muons
to the algorithm. Given good end points, the algorithm can successful tag over 90% of the
tracks from start point to end point.
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Figure 8.14: Performance of the boundary point tagging algorithm for six types of detec-

tor boundaries. Left : Number of true (blue), and reconstructed (red) crossing points for

each boundary type. Right : Ratio of the number of reconstructed to true crossing points.

Top and bottom points are best reconstructed correctly while approximately half of anode

crossing points are reconstructed.

On average, 85% of the track ends are found by the boundary crossing tagger. This

fraction remains flat as the complexity of the image, measured by the number of occupied

pixels, increases as demonstrated in Fig. 8.15.

8.4.2 Through-Going Muon Reconstruction

Through-going particles are muons which feature a straight track with slight curvature,

due to the space charge effects, connected at two boundary crossings. An algorithm, called

ThruMu, reconstructs through-going muon particles.
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Figure 32: (Left) The fraction of true cosmic muon boundary crossing points that have been tagged
using MCC8 BNB intrinsic ⌫e+cosmic MC. (Right) The fraction of true crossing muon
points tagged versus the total number of pixels above threshold across all three planes.
The total number of above threshold pixels is used to measure the complexity of the
image as it ought to correlate with the number of tracks in the event. This plot suggests
that the performance of the boundary crossing tagger does not correlate with the number
of tracks in an event.

Figure 33: A cosmic ray MC event. Truth information has been used to label points where a
muon enters (red) and exits (blue) the detector. The charge deposited is displayed in
white (dilated some to help visibility). The true entry and exit points are given to the
through-going muon tracker, whose output is shown in green. Despite gaps and the
busyness of the image, the crossing points are able to be connected. The only tracks left
in this image are stopping muon tracks (which only have a red entry point).

8.2.1 Flash Matching Through-Going Muon Tracks

In order to improve the quality of through-going muon reconstruction, an algorithm for
incorporating flash matching information into this process was studied. Through-going muon
tracks, which are reconstructed from two boundary points, are likely to form better matches
with flashes of light collected in the PMTs than stopping muon tracks because they deposit
more light in the PMTs and take straighter trajectories through the detector.

The flash-matching model is carried out in through-going muon reconstruction as follows:
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Figure 8.15: Left : Fraction of true crossing muon end points tagged by the ThruMu tag-

ger. On average, an MC event will have approximately 80% or more end points identified

correctly. Right : The fraction of end points tagged versus the total number of pixels in the

image.

The algorithm begins by selecting a pair of boundary crossings and executes a path

finding algorithm to follow charge between the pair of points. Two path finding algorithms

are used based on track topology. First, a straight line is drawn in 3D between the boundary

points and projected into each of the three views separately. A search is performed in each

view of pixels lying along the straight line, within a distance of five pixels, stepping forward

in the drift direction. At each point in time, all three views must find charge; or else two

views must find charge, while the third has a tagged bad region. This allows the algorithm

to proceed through detector regions where one plane is dead. If 95% of the steps along the

track have charge where expected then all pixels found in the search are tagged as through-

going. The other 5% of pixels that did not satisfy the charge and bad channel requirement

are also included in the ThruMu track and are tagged as ThruMu. If the amount of observed

charge is between 20% and 95% of what is expected, then a second algorithm based on the

A* path-finding method [33], which looks for tracks with non-linear deviations is applied.

In the A* path-finding algorithm, the images are compressed such that each pixel becomes

4 wires by 24 time ticks (1.2 cm in wire view and 1.3 cm in time view). This allows for faster

search over the image by reducing the resolution of the 3D grid. A single bad and dead
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pixel, therefore, now has 4 wires that are failing to respond. If a path can be formed, then

a ThruMu candidate is created. Finally, the image is decompressed and the pixels along

the path are tagged as ThruMu. An example of ThruMu tracking is shown in Fig. 8.16 for

a simulated event.

MicroBooNE Simulation

Enter point
Exit point

3D Tracks

Figure 8.16: Example of ThruMu tracking applied to a simulated cosmic ray event. Crossing

muon entry (red) and exit (blue) points are shown. Green lines represent the output of the

ThruMu algorithm.

8.4.3 Stopping Muon Reconstruction

After ThruMu tracks are reconstructed, the remaining pairs of boundary points along with

the set of untagged pixels are scanned using an algorithm which identifies stopping muon

particles, called StopMu. The StopMu algorithm begins by taking steps away from a bound-

ary point of a defined length that satisfies two constraints. First, the path covered by the

step must project back onto all three planes with charge. Second, if multiple steps are

possible the track will preferentially follow the previously found direction. By iterating

using these criterion, the algorithm builds a 3D path for the candidate stopping muon into

the detector. An example of stopping muons found by the StopMu algorithm is shown in

Fig. 8.17.
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MicroBooNE Simulation

Y

StopMu Tracks

ThruMu Tracks

Figure 8.17: An example MC intrinsic νe events with CORSIKA cosmic rays. ThruMu and

StopMu tracks are shown as yellow and pink lines respectively.

8.4.4 Cosmic Pixel Tagging Efficiency

The cosmic tagging algorithms are analyzed by studying the fraction of pixels on all three

planes above a threshold that are tagged. Fig. 8.18 shows the fraction of pixels with an

intensity value above 10 that have been tagged by the ThruMu, ThruMu and StopMu,

and pixels which remain un tagged. On average the ThruMu and StopMu algorithms tag

approximately 75% of all above threshold pixels in an image. After the StopMu algorithm is

applied, the pixel fraction does not change significantly. In the reconstruction and analysis

chain the StopMu algorithm is disabled due to poor performance on simulated data.
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Figure 40: The fraction of pixels tagged after di↵erent stages of the pixel tagger: through-going
muon (black), stopping muon (blue), contained tracks (red). This plot was made using
MCC8 intrinsic ⌫e+cosmic MC events.

are tagged as red, and the uncontained charge is tagged as white. It is possible to turn
on boundary-crossing markers, where the code is: triangles–top, circles–bottom, upstream–
square, downstream–square, anode–cross, cathode–cross. As the algorithms search the pixels,
a penalty is added for crossing bad/dead regions. The regions picked up with penalty are
indicated as very bright pixels in a grey background indicating the dead wire.

Fig. 39 shows an example cosmic-tagger display (not RGB display!) of an event. One
can see where the track charge was projected through the dead wires, as indicated by the
brighter pixels. The neutrino event was successfully tagged as contained.

8.7 Flash Matching

The last step of the algorithm is flash-matching. Here we aim to select those tracks which are
consistent with the in-time flash of light seen in the PMTs. For each object produced by the
previous steps, be it a through-going muon track, a stopping muon track, or a contained 3D
cluster, we have some hypothesis for the position of charged deposited in the detector in 3D
space. This allows us to use the photon library to form a hypothesis for the spatial distribution
of light seen in the PMTs. We use our 3D tracks to form space points separated 0.3 cm apart.
For each object, we calculate the chi-squared value between the flash hypothesis and the in-
time flash PE distribution. Flash matched objects are required to have a chi-squared per
degree of freedom of less than 100, making this a very loose criteria. However, combined
with a containment cut described below, we are able to select only a handful of objects per
event to pass to the downstream algorithms.
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CORSIKA cosmic rays.
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The performance of the ThruMu algorithm is profiled on CORSIKA cosmic muon MC.

To separate issues of the ThruMu tracker from those of the boundary crossing point finder,

truth information is used for the start and end points of the muons to the algorithm. Given

true boundary point locations, the algorithm can successfully tag over 90% of the tracks

from start point to end point.

One point of inefficiency introduced by the cosmic ray tagger is the misidentification

of neutrino induced pixels as cosmic rays. This can occur via two primary means. First,

if the neutrino interaction interacts inside the TPC and is large enough in energy, the

daughter particles may exit the TPC, producing a boundary point. This boundary point

may be connected to another boundary point via the tracking algorithm and cause neutrino

daughter particles to be tagged as cosmic ray. The second way is if a through-going cosmic

ray crosses contained neutrino charge in the plane projection. When this occurs, the cosmic

tagger can follow the cosmic track onto the neutrino pixels and partially label them as

cosmic ray. An example is shown in the top of Fig. 8.19.

Using a sample of 1e1P events, approximately 50% of interactions have at least 10%

of their visible neutrino pixels tagged as cosmic ray. The interference of the neutrino

interaction by the cosmic tagger is partially alleviated by detailed topological reconstruction

described in Section 8.8.

8.4.5 Contained Region of Interest Reconstruction

The optical flash information of the event contains an indication of neutrino activity present

inside the TPC. An algorithm is designed to localize a Z region of the detector where the

in time flash occurred, called a Contained Region of Interest, or cROI. An example of two

cROI on top a LArCV event image is shown in Fig. 8.20.

The cROI is of fixed size and placed on the event image at the mean Z position of the

flash. The mean flash position is defined as the PE weighted PMT position. The cROI

defines a 3D region in TPC space to execute detailed reconstruction of neutrino activity.

The cROI efficiency is shown in Fig. 8.21 and is defined as the ratio of events for which

the true neutrino vertex is located inside the cROI to all simulated events.

The two plane cROI efficiency is approximately 95% or larger with minimal dependence
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Figure 82: Neutrino event images with and without cosmic ray ThruMu pixel tagging. The dark
blue pixels are pixels of zero charge, the yellow and cyan colored pixels are track and
shower pixels respectively. The white pixels are labeled as cosmic ray by the ThruMu
algorithm. Cosmic ray pixels are removed from the image and can impact the ability to
find the neutrino vertex.
Left: A 3.7 GeV 1e1p neutrino event producing 1 proton (116 MeV energy deposited)
and 1 electron (3.6 GeV energy deposited). The cosmic ray tagger has labeled both the
proton, and most of the electron shower as cosmic ray and removed those pixels from
the image (white).
Right: A 844 MeV 1mu1p neutrino event producing 1 proton (234 MeV energy deposited)
and 1 muon (466 energy deposited). The cosmic ray tagger has labeled both the proton
and muon pixels as through going muon, removed them from the event image (white)

102

Figure 82: Neutrino event images with and without cosmic ray ThruMu pixel tagging. The dark
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Figure 8.19: Top: Example of a 1e1P interaction on the Y plane in false color scale with

cosmic rays artificially removed. The right image shows the effect of the cosmic tagging

algorithm (white pixels) applied to the event. Bottom: The distribution of fraction of

neutrino pixels tagged as ThruMu for a sample of well reconstructed 1e1p events.

on the true neutrino energy.

8.5 Track and Shower Pixel Identification using Semantic

Segmentation

8.5.1 Network Architecture

The SSNet (Semantic Segmentation Network) architecture used is called U-ResNet which

is a hybrid of the U-Net [34], which has been used to identify pixels in microscopic images

of living cells for biomedical research, and ResNet [35]. An overview of the U-ResNet

architecture is shown in Fig. 8.22.
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Figure 8.20: Example 1µ1P collection plane event image featuring two cROI (blue boxes)

placed at the mean position of the in-time flash (beige line). The cROI defines a sub region

of the detector space for further pattern recognition.
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Figure 8.21: Efficiency of placing cROI on the event image consistent with the true neutrino

vertex location as a function of true neutrino energy. The blue and red curves show the

efficiency for placing the cROI on the image covering the neutrino vertex in at least two

planes, and requiring one of them to be the collection plane respectively. The green curve

shows the efficiency for placing the cROI on the image covering the vertex in all three TPC

planes.
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Figure 8.22: Diagram of U-ResNet architecture. A 512 x 512 single channel image is

input. Black arrows describe the direction of tensor data flow. Dashed green lines indicate

concatenation operations to combine filter outputs from the convolution layers to the input

of deconvolution layers. The final output has the same spatial dimension as the input except

for the depth which becomes 3 channels, one per pixel class

The structure of U-ResNet follows a typical network design for a SSNet. The architecture

consists of two parts. The first part of the network mimics that of an image classification

CNN and is responsible for learning complex image features. The left-half of Fig. 8.22

corresponds to this first component, sometimes referred to as the convolutional half, and

can be seen as encoding the image onto different image features. This half of U-ResNet

contracts the spatial dimension from the input size of 512 x 512 pixels down to 16 x 16

pixels through 11 convolution blocks where the number of feature maps becomes 1024.

Starting from the output of the first half, the second half of a SSNet expands the spatial
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dimension by successive interpolation or up-sampling layers. In other words the second-half

of the network, referred sometimes as the deconvolution half, projects the encoded feature

information back into image. Here, deconvolution refers to backward strided convolution

or interpolation. Using the projected image features, the last layers of the network’s second

half makes a classification prediction for each pixel. The right half of U-ResNet performs

expansion of the spatial dimension from 16 x 16 to 512 x 512 by a series of deconvolution

operations.

The output of U-ResNet is an image with the same spatial dimension as the original

input but expanded to 3 channels. Each channel contains a pixel-wise score of being one of

three types: background, shower, or track. Fig. 8.23 shows a visualization of the network

output on the right column for electron and proton final state from a 1e1P interaction.
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Figure 8.23: Visualization of example input and output data tensors for a 1e1P interaction.

The left column shows the input LArCV image (top) and the true pixel-wise label (bottom)

used to train the SSNet. The labeled image shows track pixels in yellow, and shower pixels

in cyan. The right column shows the network output which is a pixel-wise normalized score

of being a background (top), shower (middle), and track (bottom) type.

The class label per pixel is determined by taking the label with the largest score at each

pixel point.



CHAPTER 8. IMAGE BASED NEUTRINO RECONSTRUCTION 79

8.5.2 Network Training

The U-ResNet architecture is implemented using Caffe [36] and customized [37] to employ

spatial loss weighting. A transfer learning technique is employed by first training the first-

half of U-ResNet for an image classification task using the identical data set from described

in [7]. The data set contains single particle images of electron, photon, muon, pion,

or proton. The network’s weights, trained first to discriminate between different particle

images, provide a initial state to perform pixel-level track and shower separation.

Both sides of U-ResNet network are trained starting with pre-trained weights for the

convolution side as described above, and randomly initialized weights for the deconvolution

side. Training data is produced using a custom event generator called MultiPartVertex

(MPV). The generator produces simulated 3D interaction vertices at random locations

inside the MicroBooNE TPC with no neutrino model dependence. Five types of particles

are simulated: electron, gamma, muon, pion, and proton. The particles are emitted with

isotropic momentum from the vertex. The data set consists of 140,000 images and contains

the following particle and multiplicity distributions:

• 80% of events are simulated requiring one of the generated particles to be a electron

or muon with kinetic energy ranging from 50 to 1000 MeV. For the other generated

particles, the MPV is configured to randomly assign their types to a photon, charged

pion, proton, or another lepton.

• 20% of events are generated with random particle type and the total multiplicity is

set randomly between one and four particles. For each particle type, the maximum

multiplicity is set to two. The ranges for the randomly assigned momentum are

specified as 30 to 100 MeV/c for electron and photon, 85 to 175 MeV/c for muon, 95

to 195 MeV/c for pion, and 300 to 450 MeV/c for proton.

Additionally, a pixel wise loss is implemented to focus the network’s attention on non-

background pixels in the image as shown in shown in Fig. 8.24. The first category contains

background (i.e., zero) pixels that surround non-background (i.e., non-zero) pixels within

2 pixels. The second category is the rest of background pixels in the image that do not

belong to the first category. The third category represents non-zero pixels within 4 pixels of
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the generated event vertex. Finally, the fourth category is defined for each particle instance

and includes non-zero pixels that belong to a particle.

Figure 8.24: Top: An example LArCV image from the training set in which two protons,

one electron, and one muon are produced. Bottom: The event from the top image that

shows the categories for pixel-wire loss weighting indicated in different colors.

The RMSProp algorithm [38] is used for optimization with a batch size of 50 images

and performed on a NVIDIA Titan X GPU. The loss and accuracy, defined as Incorrectly

Classified Pixel Fraction (ICPF), as a function of epoch is shown in Fig. 8.25.

8.5.3 Performance

The performance of U-ResNet is benchmarked on test simulation samples of 1e1P events,

and low energy 1µ1P and 1e1P events. All samples are generated using the MPV generator

as described in Section 8.5.2. The samples are configured to generate one proton and

one lepton only. Particles are simulated with a uniform energy distribution and isotropic

momentum direction distribution. The kinetic energy range is set to be 50 to 500 MeV for

electron and 50 to 300 MeV for protons. In addition, there are two low energy MPV samples
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(a) (b)

Figure 8.25: (a) The loss value as a function of training time using the validation sample.

The red line shows the average at a given epoch using 200 the neighboring points. (b) In-

correctly Classified Pixel Fraction (ICPF) as a function of training time using the validation

sample. The drop in both plots at epoch 14 is due to lowering of the learning rate by a

factor of 10.

generated: low energy 1e1P (1e1P-LE) and low energy 1µ1P (1µ1P-LE). For 1e1P-LE, the

electron has momentum distributed from 30 to 100 MeV/c. For 1µ1p-LE, the momentum of

muon is distributed from 85 to 175 MeV/c. In both samples, the momentum of the proton

is distributed from 300 to 450 MeV/c. Four metrics based on the error rate are used. The

error rate is defined as,

Error rate = 1− 1

N

N∑

image

(
Number of correctly labelled non− zero pixels

Number of total non− zero pixels

)
. (8.1)

• ICPF mean: the average value of incorrectly classified pixel fraction per image com-

puted over all events in a sample. The ICPF metric is the combined track and shower

pixel label error rate.

• ICPF 90% quantile: the ICPF value below which 90% of events in a sample are

present.

• Shower error rate: the average value of the shower pixel only error rate, averaged over

all images in a sample.

• Track error rate: the average value of the track pixel only error rate, averaged over
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all images in a sample.

The results can be found in Table 8.1.

Sample ICPF Mean [%] ICPF 90% [%] Shower [%] Track [%]

1e1P 2.2 5.7 2.8 4.0

1e1P-LE 3.9 11.5 3.8 8.0

1µ1P-LE 2.3 2.2 6.2 2.4

Table 8.1: Values of the four metrics defined in Section 8.5.3 to benchmark the SSNet

performance.

The network is generalized to perform well on simulated neutrino events to a level that

allows us to apply the technique as a part of the reconstruction chain. We do not train the

SSNet on our 1L1P signal predictions as simulated by GENIE because this may introduce

a model bias. The benchmark results on 1L1P-LE events demonstrate that the U-ResNet

can classify pixels from the low energy two particle topologies of track and shower at the

ICPF mean value of 3.9% and 2.3%, respectively. In the 1µ1p-LE sample, despite the

fact that no showers are produced in the primary neutrino interaction, challenges for the

network arise from similarities between muons and electrons at very low energies and from

secondary interactions like Michel electrons from muon decays. The error rate for the 1e1P

and 1e1P-LE samples as a function of kinematic variables is shown in Fig. 8.26.

Fig. 8.26(c) shows the correlation with the opening angle between the two particles in

1e1p sample. The error value is expected to increase when the two particles are colinear

and the 2D projections of the particles overlap. When the particles are back-to-back, the

difficulty in distinguishing them arises from the fact that two trajectories may appear as the

trajectory of one particle. Fig. 8.26(a) and (b) show the dependence of the performance on

the kinetic energy of a particle from 1e1P-LE sample. The network performs worse at lower

energies. The ICPF value reaches approximately 15% at 50 MeV proton kinetic energy. A

proton at this energy only travels a few centimeters in liquid argon, which translates into

10 pixels or less in the collection plane image. Such a small amount of information makes

the networks task difficult. A similar trend of decreasing performance can be also seen

for electron kinetic energy. The critical energy above which electrons primarily produce
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(a) (b)

(c)

Figure 8.26: ICPF error rates for labelling proton (track) and electron (shower) pixels for

the test sample versus kinematic variables from simulation. (a) The electron kinetic energy

from the 1e1P-LE sample. (b) The proton kinetic energy from the 1e1P-LE sample. (c)

The opening angle between two particles from the 1e1P

bremsstrahlung in liquid argon is about 30 MeV. In the energy region near or below the

critical energy, electrons may not exhibit a feature of showering and the network may

struggle identifying them as showers.

8.6 Vertex Finding & Particle Clustering

8.6.1 Image Preparation

At this stage in the reconstruction the SSNet has labeled non-zero pixels as either track and

shower type. The vertexing algorithm requires as input three separate images as shown in

Fig. 8.27.

The first image contains all pixels in the cROI and is called the ADC image. The

second contains pixels only labeled as track type, called the track image, and the third

image contains only pixels labeled as shower type, called the shower image. The algorithm
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7vgenty

Input to Algorithm

3 separate images
ADC image Track image Shower image

• Algorithm can make track or shower assumption when feature finding! 
• Reconstruction can combine track and shower features for analysis

DL Review Day 1

νe

νµ

Figure 8.27: Three separate images are provided as input into the vertex finding algorithm.

An ADC image which contains all pixels in the cROI. A track image which contains only

track labelled pixels. A shower image containing only shower labelled pixels. Example

inputs are shown for a 1e1P (top row) and 1µ1P (bottom row) interaction.

is designed for dedicated reconstruction of tracks and showers separately where different

algorithm techniques are be used. The algorithm then reconstructs combined features by

considering all pixels together. In this design the algorithm is detached from having to

algorithmically identify track and shower particles and can make different assumptions

about how to locate the vertex for 1e1P interactions, which feature a single track and

shower, and 1µ1P interactions, which feature two tracks. By knowing the track and shower

label before hand, the pattern recognition is simplified for finding the vee shape.

The algorithm is additionally supplied a set of images with tagged cosmic ray information

and with images marking the spatial location of dead wires. The cosmic ray images contains

through going muon pixels and stopping muon pixels tagged. In this reconstruction, through

going pixels are erased from the image while stopping muon pixels are unused. With through

going muon pixels removed from the ADC, track, and shower images, the probability that

the algorithm will reconstruct cosmic background is greatly reduced. The dead wire image

set marks the location with dead wires. This way the algorithm can know precisely which

region in the image contains pixels which contain no charge and make a decision about

whether to veto certain detector regions during reconstruction.
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8.6.2 Track Vertex Finding

To reconstruct 1µ1P interactions, which features two track-like particles, the algorithm

searches for a vertex in the track image. The algorithm searches for a vee shape in three

dimensions by first analyzing 2D track clusters to identify “vertex seeds”. Vertex seeds are

2D objects which represent potential projections of a 3D vertex. For example, a vertex

seed can be a kink in a track which could represent an interface between two particles or

the centroid of an object with any number of prongs emitted out of a single point. To

identify vertex seeds an algorithm for breaking a generic track object and into straight line

components was developed. An example of a non-trivial track object which is broken into

unique clusters is shown in Fig. 8.28.

Generic  
Track Object Line Clusters

Figure 8.28: Left : Example of a star shaped object containing 6 obvious prongs. Right :

Output of the algorithm. A collection of 6 straight clusters connected at a central point, or

a potential vertex seed.

In Fig. 8.29 a LArCV image of a simulated 1µ1P event is shown on the V plane. In this

image the muon particle travels toward the upper left hand portion of the image and the

proton toward the lower right. This event will serve as a demonstration of the track vertex

finding algorithm.

In Step 1, a LArOpenCV image of a 1µ1P interaction is shown.

In Step 2, two types of track clusters are identified by separating two different charge

scales. A distinction between pixels in the Low Charge (LC) and High Charge (HC) regime

as shown in Fig. 8.30 is performed. The boundary between LC and HC ADC count is

a constant threshold per plane and is determined from a study of the pixel intensities of

simulated protons. The minimum HC value for the U, V, and Y planes are set at 140 ADC,
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Figure 8.29: Algorithm steps 1 - 5, described in Section 8.6.2, for analyzing a 1µ1P inter-

action to locate vertex seeds.

120 ADC, and 80 ADC respectively. These values correspond to 10% of the average pixel

value for a proton track on each plane. Pixels with values below 10 ADC count are not

considered in the reconstruction.

Once the pixel ranges are separated, the algorithm finds groups of LC and HC pixels

by applying the OpenCV contour finder. This step defines the LC and HC pixel clusters.

Pixels that satisfy the HC condition are also included in the LC clusters, to avoid hollow

clusters. HC clusters are therefore a subset of the LC clusters.

In Step 3 the vertex algorithm computes the convex hull, which is the smallest convex

polygon which bounds the original cluster.

In Step 4, the algorithm identifies a defect point, which are the sides of the convex hull

which are far away from their corresponding sides on the contour. The point on the contour
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High Charge 
Regime

Low Charge 
Regime

Figure 8.30: Distinction between low (left) and high (right) charge regimes for a 1µ1P

interaction. The low charge regime encapsulates all pixels in the image above 10 ADC. The

high charge regime contains pixels above a higher charge threshold. In this example, only

the proton bragg peak passes the HC threshold.

that is farthest away from the corresponding hull side is called the “defect point”, and is

a location where the cluster is potentially bending and changing direction. If the convex

hull side is far enough away, 5 pixels, from the defect point the contour is then broken into

two at that point. The bottom image shows the three clusters obtained after this stage, 1

HC cluster and 2 LC clusters. The algorithm then iteratively breaks down all clusters into

linear segments until no defect points remain.

The result are three straight track contours for the example 1µ1P interaction shown in

Step 5.

Next, two types of vertex seeds are identified in using the line clustered image as shown

in Fig. 8.31.

The first set of vertex seeds are the location of the defect points and as shown in Step

6 of Fig. 8.31.

The second set of vertex seeds is found using a Principal Component Analysis (PCA)

procedure which fits the clusters to a straight line hypothesis. The PCA is a linear approx-

imation which minimizes the perpendicular distance between the data (the pixel points),

and the estimated line. A PCA is calculated for each line cluster separately. Since all

clusters have been broken into linear segments by removing defects, a linear approximation

is suitable. The algorithm then computes the intersection of all possible PCA lines on the

plane. If the lines intersect near a location on the image with charge, the point is saved and
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Figure 8.31: Algorithm steps 6 & 7, described in Section 8.6.2, for analyzing a 1µ1P inter-

action to locate vertex seeds.

is added to the set of vertex seeds. Intersection points far from any charge are ignored. The

upper right image in Fig. 8.31 shows the three PCAs found in the event example. Although

three intersections points are found, only two correspond to pixels with charge and are

then kept (middle image). This type of vertex seed helps find the 2D location where tracks

which may be changing direction in the image. Also, using a linear approximation for the

clusters provides an additional set of vertex seeds which increases the efficiency to find the

3D vertex.

The set of vertex seeds for the example 1µ1P interaction is shown in the lower half of

Fig. 8.31 for the U, V, and Y planes as yellow stars. One can notice a clustering of vertex

seeds around the true projected neutrino scattering point where the muon and proton

particle are produced.



CHAPTER 8. IMAGE BASED NEUTRINO RECONSTRUCTION 89

The algorithm then performs an exhaustive search for a 3D vertex around each seed by

minimizing a quantify called the “angular metric” or dΘ for short. The angular metric is a

single quantity which measures the likeliness of two tracks being emitted radially outward

from the same position across two or more planes. This metric is minimized when a point in

3D space is found where the 2D projections indicate that tracks are coming out of a single

point.

The algorithm begins a search for a 3D vertex by defining a local search region around

each vertex seed as shown in Fig. 8.32a.

Φ

Circle @ 
Vertex Seed

Crossing 
Points

Local PCA 
Directions

Wire

Ti
m
e ϴ

Zoom Zoom

a. b. c.

d.

Figure 8.32: Algorithm steps a-d, described in Section 8.6.2, for analyzing a 1µ1P interaction

to locate the 3D vertex from vertex seeds.

Circles of radius 6 and 12 pixels are drawn with the given vertex seed at the center. The

circle size with the greatest number of tracks coming out is used. In cases where the same

number of tracks cross the circles, the largest circle is kept. The algorithm then identifies
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the points at which the out-going tracks cross the circle. In the example shown in Fig 8.32b

crossing points are found and are labelled as yellow dots. For each pair of out-going tracks,

the algorithm evaluates two angular quantities:

1. The first angular quantity, Θ, is the smallest angle between the center of the circle,

and each pair of track-circle intersection points.

2. The second quantity, Φ, is calculated in the following way. At each cluster-circle

intersection point a small region of 7 x 7 pixels is identified. In this region, a PCA

of charge carrying pixels is computed, and provides an estimate of the local track

directions. Φ is the smallest angle between each local PCA pair.

The definition of the two angles are shown in the low half of Fig. 8.32.

Next, the location for which dΘ is minimized is found. Starting at the vertex seed, two

lines segments are drawn from the initial local PCA approximations as shown in Fig. 8.32c.

The circle center is then stepped in increments of 1 pixel along the straight line segments.

The algorithm then computes the magnitude difference dΘ = |Θ−Φ|. When the local track

direction on the circle boundary (Φ) matches the direction between the center and crossing

points (Θ) the difference is small and indicates that the circle is at a location where the

tracks are coming out straight from the center point, likely indicating a kink feature. At

each step dΘ is evaluated and stored per time tick. The stepping stops when the algorithm

has scanned a 40 x 40 pixel region around the initial vertex seed. This procedure is repeated

for each vertex seed in the plane. The evolution of dΘ as a function of the corresponding

time tick is represented at the bottom of Fig. 8.33.

If two vertex seeds happen to scan the same time tick, the lowest dΘ value is stored.

Next, the dΘ versus time-tick maps for the three views are summed to produce a single

distribution of dΘ values as shown in Fig. 8.34.The summed dΘ profile is to be minimized

to find the best vertex location. The distribution is smoothed using a rolling mean approx-

imation of 6 time ticks. Finally the algorithm searches for local minima in the spectrum to

find regions where a coincident vertex feature appears across multiple planes shown as the

black vertical line in Fig. 8.34.

In each plane, the circle at the local minima time is examined and matched across
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Figure 8.33: Procedure for scanning the collection of vertex seeds to search for the best

kink location by minimizing dΘ as described in the text.

planes using wire coincidence. If coincident wires are found, then a 3D vertex is claimed.

An equivalent procedure is carried out by performing the search for local minima in the

angular spectrum in overlapping wire regions.

To obtain the 3D vertex position, the vertex time provides the X-coordinate. The Y

and Z spatial information of the vertex is extracted from wire coincidence across any pair

of U, V, and Y planes at the minimum time tick. Finally, the resulting 3D vertex is refined

using a 3D volume scan in a (4 x 4 x 4) cm3 region around the vertex as described in

Section 8.6.3. For each location in that space, the 2D projections of the point in 3D space

are estimated, and the dΘ variable is computed. This stage allows to further improve the

estimation of the best 3D location of the vertex. The reconstructed 3D vertex location is
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Figure 8.34: Top: Minimization of dΘ performed for vertex seeds in each of the three wire

planes. Bottom: Sum of dΘ for coincident time tick and wire. A local minimum is found

which defines a 3D consistent kink.

shown for the example 1µ1P event in Fig. 8.35.

8.6.3 Track - Shower Vertex Finding

To reconstruct 1e1P interactions the algorithm searches for a vee shape at the interface

between track and shower pixels. An example SSNet image of a 1e1P interaction is shown

in Fig. 8.36. Vertex finding is less complex than in the track-only case as two topologically

different particles types are emitted from the vertex, one track and one shower. Since the

track and shower pixels have been previously separated by the SSNet the algorithm can

make an assumption about the straightness of track pixels. The vertex can be located on

the edge of a single straight track connected to a cluster of shower pixels. Due to track and
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Figure 8.35: Reconstructed 3D vertex position (cyan) and true vertex position (yellow) for

the example 1µ1P interaction.

shower pixel classification near the true vertex point may not be precise, a kink point is

optimized as in the case of track vertex finding.
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Figure 8.36: Example SSNet images of a 1e1P interaction to demonstrate the track-shower

vertex finding algorithm. Track and shower pixels are labelled as yellow and cyan respec-

tively.

First the algorithm identifies edge points in the track only image as shown in Step 1 of

Fig. 8.37. Under the assumption that tracks are straight, edge points are found by finding

the point farthest away from the mean position of all pixels of a cluster, then finding the
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second edge point by locating the furthest point away from the first edge. Each track cluster

will have two 2D edge points.

At each edge point a circle of radius 10 pixels is drawn. In Step 2 the algorithm counts

the number of times shower pixels cross the circle boundary. If zero points are found, no

shower exists. If one or more crossing points are found, the track edge point likely does

not contain a signal shower particle and is vetoed. To ensure that the shower pixels are

physically connected to the track edge, a straight line is drawn between the vertex and the

circle boundary. If a continous cluster of shower pixels lie on the line, then the shower

crossing point is accepted. This ensures the shower particle is not a photon. In the example

1e1P interaction a single valid track-shower point is found on each of the three wire planes.

Y

Step 1 Step 2

Step 3 Step 3 Step 3

Track edge Track + 
Shower edge

Matched 
3D Edges

U V Y

Figure 8.37: Algorithm step, described in Section 8.6.3, used to locate a consistent 3D edge

where a shower is attached to a track.

Next, in Step 3, the algorithm compares the track-shower edge points pairwise across

planes to form a candidate 3D point. A 3D point is formed for each pair of track-shower

edges by matching the time and coincident wires. The Y and Z position of the candidate

3D point is formed by comparing coincident wires. The X position is determined as the
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average tick location between the two points. Candidate 3D point formation is rejected if

the pair of track-shower edge points do not have overlapping wires or if the time coordinate

of the pair are separated by 12 pixels (∼4 cm). Allowing for a generous time-coincidence

between 2D edges helps handle the case where a shower exists on the end of a track which

may not be consistent in three dimensions. This case may occur for instance when the trunk

of the electron shower is classified as track pixels, and the number of trunk pixels classified

as track varies across two or more planes, preventing a good 3D edge point to be found. In

Fig. 8.37, three candidate 3D points are found and labelled as red, green, and blue.

To locate the single point in space where a vertex is likely present a grid scan is imple-

mented to minimize the angular metric dΘ in the space locally around each candidate point.

At each 3D candidate point, a 4 x 4 x 4 cm volume is constructed as shown in Fig. 8.38a.

If two or more candidate points overlap in 3D space, the volumes are combined to form a

mutual volume. This prevents the algorithm from repeatedly scanning the same 3D space.

In Step 4 of Fig. 8.38 three 3D candidate points have been combined into one volume.
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Figure 8: An example 1µ1P event display showing only track-identified pixels by SSnet in the U
plane. The vertical axis is in wire number (3 mm per wire), and the horizontal axis is in
summed time ticks (6 ticks combined together, where 1 tick corresponds to approximately
0.55 mm drift distance). The proton (green) travels forward in wire number and muon
(orange) backwards. The vee shape topology is shown. Figure 26 in internal note.
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Figure 8.38: The grid scan procedure for locating the best 3D interaction vertex for track-

shower events. Steps are described in Section 8.6.3.

The grid is scanned in steps of 0.5 cm across the volume. At each 3D step in the volume
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a 2D point is formed by projecting onto the image. If the pixel is empty on two or more

planes, the 3D point is rejected. Next, a circle is graduated in size from 6 pixels to 10

pixels in steps of 2 pixels. At each radial step the 3D angular metric dΘ is computed. The

product of dΘ across planes is minimized over the 3D volume and the point with the lowest

value is claimed as a 3D vertex candidate. By optimizing the product of dΘ over multiple

radii the best kink point location is found.

Step 5 Step 5 Step 5

U V Y

Figure 8.39: Location of the reconstructed 3D vertex (green star) for the example 1e1P

interaction.

The result of the grid scan procedure for the example 1e1P event is shown in Fig. 8.39.

Step 5 shows a single candidate vertex being located at the track and shower interface.

8.6.4 Particle Clustering

The algorithm performs a pixel clustering procedure to find unique particles coming out

of each 3D vertex candidate. A particle is represented by a cluster of pixels found on two

or more planes which represent the same energy deposition. First, a clustering algorithm

groups unique sets of pixels together using the ADC image and the 3D vertex information.

Finally, the algorithm matches plane-wise clusters across planes using temporal overlap to

form particle objects.

The clustering procedure is applied to an example 1µ1P event is shown in Fig. 8.40a.

For each reconstructed vertex the algorithm draws a circle of fixed size centered at the

projected 2D point on each plane as shown in Fig. 8.40b.

The algorithm then locates where the pixels intersect the circle boundary. The clustering
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Figure 8.40: Particle clustering steps a-c for a 1µ1P interaction as described in Section

8.6.4.

procedure is separated into two regions: inside and outside. Inside the circle the tracks

emitted from the vertex point are straight, and outside they may exhibit some curvature as

shown in Fig. 8.40c.

First the algorithm considers only pixels inside the circle. A crop of the pixels inside

the circle are shown in Fig. 8.41a.

Pixels are transformed to polar space to be clustered. Polar space is a natural coordinate

system to identify unique clusters coming out of the vertex since inside the circle clusters

are locally straight and come out radially at fixed angle. Therefore, unique particles will be
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Figure 8.41: Particle clustering steps using a polar coordinate system described in Section

8.6.4.

be separated in the polar angle as shown in Fig. 8.41b. To ensure particles are disconnected

in polar space, a mask of 3 pixels is applied around the vertex, excluding those pixels from

clustering as shown in Fig. 8.41c. In the polar space the algorithm finds two clusters at

two separate polar angles. Both clusters are projected back into cartesian space as shown

in Fig. 8.41d.

Outside the circle unique clusters are identified in cartesian space to capture long range

behavior. In the 1µ1P example two child clusters are found in Fig. 8.42b.

The algorithm then connects the parent clusters inside the circle with the child clusters

on the outside by minimizing their distance to the circle boundary. This particle cluster-

ing procedure ensures that a unique cluster can be found near the vertex by using polar

coordinates, and the cluster’s long range behavior, which may be non linear, is captured as

well.

Next, 3D consistent particles are formed from 2D clusters. The algorithm calculates

the overlap in time of pairs (U,V), (U,Y), (V,Y) of plane clusters and assigns a score based
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Figure 8.42: Particle clustering steps to connect parent clusters found inside the circle to

clusters found outside. Two unique clusters are identified for the example 1µ1P interaction.

on their overlap. Cluster pairs with the highest score are then associated with the same

particle object. A figure of merit called the intersection over union, or IoU, measures the

time interval common to two clusters over the union of the two clusters time interval. IoU

is defined for two clusters A and B as,

IoU =
TA

max − TB
min

TB
max − TA

min

, (8.2)

where max and min represent the largest and smallest time values of the cluster A and

B. Cluster A is defined as the cluster which contains a pixels value later in time then

cluster B. An IoU score of 1.0 signifies perfect overlap of clusters across planes. A minimum

IoU of 0.1 is required to match two clusters, and cluster pairs are sorted in order of their

score. If a cluster has a match with two or more clusters, the pair with the largest score is

chosen. A triplet of clusters (U,V,Y) is analyzed by computing their mutual pair wise IoU.

If the difference between the maximum and minimum IoU is above threshold, the maximum

IoU score is saved. The matching continues until no cluster-pairs with a match above the



CHAPTER 8. IMAGE BASED NEUTRINO RECONSTRUCTION 100

threshold value remain. An example of the IoU matching algorithm is shown in Fig. 8.6.4.
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Figure 8.43: Example of the cluster matching procedure applied to a simulated neutrino

event and described in Section 8.6.4.

In this example a vertex is found and three particles are identified: a proton (p), and

two photons (γ1,γ2) labeled as pink and green respectively. By comparing each clusters

temporal extent across planes, denoted with pink and green dashed lines, clusters which

share a common charge deposition are identified. A vertex must have at least 1 particle

successfully reconstructed to be considered a candidate vertex.

8.6.5 Vertex Resolution

The quality of the track and track-shower image vertex-finding can be assessed using Monte

Carlo by considering ∆R, the distance between the simulated true neutrino vertex to the

reconstructed vertex. The ∆R distribution for 1µ1P and 1e1P events is shown in Fig. 8.44.

Monte carlo 1µ1P and 1e1P events are required to interact inside the TPC active volume

region and are reconstructed in the absence of cosmic rays. For 1µ1P events 68% of vertices

are reconstructed within 0.9 cm (3 pixels) of the true vertex. For 1e1P events 68% of

vertices are reconstructed within 1 cm (∼3 pixels). Both topologies exhibit some fraction

of reconstructed vertex 3 cm (10 pixels) or larger. These events are primarily associated

with reconstructed vertex found on 3D kink points associated with proton scatters and on

muon decay to michel electrons.
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Figure 8.44: Distribution of vertex resolution (∆R) for 1µ1P (left) and 1e1P (right) events.

8.6.6 Vertex Efficiency

The vertexing algorithm is sensitive to a number of upstream factors which impact the

ability to find a consistent 3D vertex across planes. Three factors are analyzed separately

to determine their impact on vertex reconstruction efficiency as a function of true neutrino

energy. The three factors are:

• Dead wires & cROI Location

• SSNet pixel classification

• Cosmic Pixel Tagging

To decouple these effects on the vertexing algorithm each upstream factor will be applied

individually to a Monte Carlo sample of 1L1P events without the presence of cosmic rays.

All simulated events are located inside the TPC active volume. The true neutrino energy

distribution for 1µ1P and 1e1P events before any reconstruction is applied are shown in

Fig. 8.45.

First, if the true neutrino vertex lies in or within 5 pixels of a dead wire region across

two or more planes (the typical algorithmic circle size) then neutrino induced pixels can

not be vertexed. Second, the neutrino can only be searched for inside a well reconstructed

cROI, such that the cROI contains the neutrino vertex in at least two planes. A cROI is

“correct” if it contains the true neutrino vertex position. Finding both the correct cROI,

and the true neutrino vertex being located at least 5 pixels away from a dead wire in at
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Figure 8.45: True neutrino energy distribution are shown for 1µ1P (left) and 1e1P (right)

events.

least 2 plane is called a “Good Event”. The Good Event efficiency for 1L1P events as a

function of true neutrino energy is shown in Fig. 8.46.
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Figure 8.46: Good Event efficiency as a function of true neutrino energy for 1µ1P (left) and

1e1P (right) events. Approximately 90% of events feature the interaction vertex inside a

cROI and at least 5 pixels away from dead wires.

The Good Event efficiency is the ratio of number of Good Events to all simulated

events. For both 1µ1P and 1e1P events the Good Event efficiency has no significant energy

dependence. The efficiency is between 85% and 90% for both samples. To study the

spatial dependence of the efficiency, the detector space is binned into 25 cm regions in the

Z direction and 5 cm in the Y direction. An efficiency map over the detector for finding a

Good Event is shown in Fig. 8.47.

A Good Event depends primarily on a vertex’s spatial location to dead wires. The

largest population of coincident dead wires is found below 200 cm in the Z direction, and
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Figure 8.47: Spatial distribution of the Good Event efficiency binned in the Y-Z detector

space.

in a region between 600 and 800 cm. In these regions the dead wire inefficiency dominates

and the Good Event decreases below 50%. In regions where at least two planes feature

good wires, such as between 400 and 600 cm, the cROI finding inefficiency is dominant. In

these region the Good Event efficiency is between 95% and 100%. Averaged over the entire

detector, approximately 10% of events will be unable to be vertexed using this algorithm.

With the Good Event efficiency deconvolved, we can study the reconstruction efficiency

of vertexing algorithm given optimal inputs. The vertexing efficiency is defined as the ratio

of events which contain a vertex within 5 cm of the true vertex to the total number of

events. The second factor which can effect the vertex algorithm efficiency is the SSNet

pixel classification. To study this effect we study the vertexing algorithm efficiency given

perfect track and shower labelling using Monte Carlo information, called “Perfect Segment”,

and then turning on the reconstructed pixel labelling called, called “SSNet”. The result is

shown in Fig. 8.48.

In this study, the inefficiency for a Good Event is deconvolved such that each MC event

is a Good Event. For 1µ1P events the vertex reconstruction efficiency for Perfect Segment

rises from approximately 70% in the sub 500 MeV region to approximately 80% above 750

MeV in true neutrino energy. In the lowest energy bin, the efficiency is approximately 60%.

When the SSNet is used a global decrease of 5% efficiency is observed. This means that
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Figure 8.48: Vertexing efficiency as a function of true neutrino energy for 1µ1P (left) and

1e1P (right) Good Events. The upper line in each plots shows the vertexing efficiency for

perfect pixel labelling and the lower line shows the efficiency for using the SSNet pixel label.

the SSNet is classifying muon and proton pixels correctly as track with good performance.

For 1e1P the vertex reconstruction efficiency for Perfect Segment is approximately 70%

and flat over true neutrino energy. When the SSNet is applied a global decrease of 10% is

observed. This is primarily due to a misclassification of electron trunk as track type particle

inconsistently across planes causing the shower on track edge feature to be inconsistent in

3D. An example is shown in Fig. 8.49. The difference between Perfect Segment and SSNet is

important in the near vertex region where the pixel classification determines which method

to search for the vertex.

The final upstream factor which can effect the vertexing algorithm performance are from

the cosmic ray tagging algorithms called ThruMu, and StopMu. ThruMu removes likely

cosmic ray pixels which pass through the detector. The second cosmic tagging algorithm

called StopMu is turned off by default in the reconstruction chain and is not analyzed here.

The ThruMu algorithm is not completely efficient at removing all thorough going cosmic

rays and can interfere with neutrino induced pixels. When this occurs, the neutrino pixels

are labelled as cosmic rays, removed from the image, and no vertex can be reconstructed.

An example of the negative effect of the ThruMu algorithm can be seen in Fig. 8.19 for

an example 1e1P event. To study the effect of the ThruMu cosmic tagging algorithm on

the vertex reconstruction efficiency we turn on ThruMu tagging in the case of the Perfect

Segment image. The result is shown in Fig. 8.50.
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Zoom Zoom

Figure 8.49: A 1e1P interaction with Perfect Segment (left), and SSNet (right). Track and

shower pixel are labelled as yellow and cyan respectively. A zoom of the vertex region is

shown in the bottom portion of the figure. A mis-classification of electron pixels as track

in the vertex region removes the presence of a shower on track edge feature.

For the 1e1P sample we can expect approximately a flat 5% drop across all true neutrino

energy. The 1µ1P sample exhibits an energy dependent feature with respect to applying the

cosmic tagger. As the neutrino energy increases above 750 MeV the vertex reconstruction

efficiency with cosmic tagging enabled decreases from 70% to 60%. This feature can be

attributed an increase in the muon daughter particle length. As the muon particle energy

increases the muon track can exit the detector, this can cause the cosmic ray tagger to tag

the neutrino as cosmic rays.

Additionally, the vertex algorithm is sensitive to parameters which affect the topology

of the neutrino around the vertex point. In this section the reconstruction efficiency is

studied as a function of simulation parameters which directly impact vertex finding. The

simulation parameters are:
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Figure 8.50: Vertexing efficiency for 1µ1P (left) and 1e1P Good Events (right) as a function

of true neutrino energy. The top line in each plot represents the vertexing efficiency for

Perfect Segment. The bottom line represents turning on the ThruMu cosmic ray tagging

algorithm.

• 3D opening angle between the lepton and proton (Fig. 8.51)

• Projected length on the Y plane of proton (Fig. 8.52)
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Figure 8.51: Opening angle distribution between the lepton and proton for 1µ1P (left) and

1e1P (right) events.

The 3D opening angle between the lepton and proton is a proxy for the degree by which

the vee shape topology is expressed in the image. The efficiency of the vertexing algorithm

as a function of the lepton-proton opening angle using perfect segmentation for Good 1L1P

events is shown in Fig. 8.53.

Both 1µ1P and 1e1P events feature a similar efficiency profile. When the lepton and

proton are co-linear and span an angle less than approximately 30 degrees the efficiency
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Figure 8.52: Proton length distribution for 1µ1P (left) and 1e1P (right) events.
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Figure 8.53: Vertex efficiency as a function of lepton and proton opening angle for 1µ1P

(left) and 1e1P events (right). The highest efficiency is achieved when the opening angle is

near 90 degrees.

drops rapidly. This is due to particles being co-linear in the projected image and feature

overlapping charge depositions. When the particle are perfectly co-linear, no vertex can be

found. On the opposite end of the spectrum when the particles are emitted anti-parallel from

the neutrino interaction point the efficiency decreases rapidly above 150 degrees. In this

regime the vertexing algorithm is inefficient at locating obtuse vee shapes. The algorithm

explicitly vetoes vertices which are located on vee shapes between 170 and 180 degrees

opening angle. This helps reduce backgrounds associated with vertices found on cosmic

rays. For both topologies, when the opening angle is within the range of 90 degrees, the

vertex reconstruction efficiency approaches 80% or larger.

The vertex reconstruction efficiency naturally depends on the length of the emitted

proton. In the low neutrino energy regime, the proton length is the topologically limiting
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factor for producing a vee shape. To study the effect of the proton length on the vertexing

algorithm, the 3D proton length is projected onto the Y plane so the centimeter scale can

be simply translated into pixel scale. The vertex reconstruction efficiency as a function of

proton particle length is shown in Fig. 8.54
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Figure 8.54: Vertexing efficiency as a function of proton length projected on to the Y

plane image for 1µ1P (left) and 1e1P (right) events. The efficiency decreases as the proton

decreases in size.

Both topologies feature a similar efficiency profile as a function of proton length. An

efficiency drop is observed when the proton length drops below 6 cm. This threshold

represents approximately the size of the largest circle used by the vertexing algorithm.

From studying the opening angle and proton length we can see the theoretical maximum

vertexing efficiency for both 1µ1P and 1e1P topologies approaches 80% or larger given

perfect inputs. The vertex efficiency convolving all aspects of the upstream reconstruction

and averaging over all kinematic variables is shown in Fig. 8.55

In the low energy region, the algorithm applied to the 1µ1P sample is approximately

60% efficient while for the 1e1P sample is approximately 50%. As the energy increases the

algorithm efficiency on the 1µ1P sample decreases in efficiency above 1 GeV, which can

be attributed to the cosmic ray tagger, while the 1e1P sample remains relatively flat. A

summary of the relative efficiency contributions for each of the three factors is shown in

Table. 8.2
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Figure 8.55: Cumulative vertexing efficiency as a function of true neutrino energy for 1µ1P

(left) and 1e1P (right) events.

Factor
1µ1P Efficiency

(% average)

1e1P Efficiency

(% average)

Good Event 90 90

Vertexing 80 70

SSNet 95 90

Cosmic Tagger 88 93

Overall: 60 53

Table 8.2: Table of relative efficiency for 5 components which contribute to the vertexing

efficiency. The cumulative, or expected efficiency, for 1µ1P and 1e1P events is shown in the

bottom row.

8.7 1µ1P Reconstruction

8.7.1 Track Finding

The track finding algorithm takes as input the full LArCV ADC images for each of the

three planes and the vertex 3D point. The ADC image is thresholded by zeroing all pixels

of value less than 15 ADC. The tracking algorithm begins at the 3D vertex and does not

use the output of the particle clustering algorithm due to its sensitivity to the presence of

dead wires. Moreover, the location of the vertex within the cROI may cause the tracks and

shower to exit that cROI. If this happens, although the vertex can be identified, the particle

clustering may not reach the end of the tracks and showers, causing a mis-reconstruction.
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Additionally, it is important to have the capability to pursue a track beyond the cROI.

Reconstruction begins by finding a set of 3D points that belong to a given track by

performing a stochastic search in the neighborhood of previously found 3D points. A reg-

ularization is then performed to find a minimal set of ordered 3D points that describe the

track at the desired spatial resolution. Finally, observables such as length, local and average

charge deposition, and angles are estimated.

Given a 3D point on a track (the vertex, or an already found 3D point), finding the

neighboring points proceeds as follows:

• The seed of the reconstruction step is placed at the last found point.

• A set of random 3D points is generated inside a sphere of radius rsearch = 2+4∗e−L/5

cm, where L represents the distance between the vertex and the previous track point.

The purpose is to allow a wider search around the vertex point. Once a track is

found the restricted radius helps to prevent the track reconstruction from jumping to

a nearby track.

• If the current track is longer than 5 cm, 3D points are chosen inside a forward going

cone in the average direction of the track from the last 10 cm. If the track is shorter

than 10 cm, 3D points are chosen inside the cone of opening angle 30◦. The forward

search region extends to 2× rsearch. While the spherical search points allows for fine

grained tracking and resolution of sudden direction changes, the forward search region

allows faster progress on locally straight regions.

• Only points that project back on pixels with non-zero charge deposition on all planes

are kept, with at most one plane on which the point projects on a dead wire.

• New points are added if the sum of the ADC values of the deposited charge on the

pixels on which they project is greater than that of the already placed points of that

iteration.

At this point, a set of neighbors to the seed are identified. Some of these points are not

relevant, because they are too close to an already found point or track. Points are rejected is

they are placed closer than 0.3 cm from an already existing point. All the remaining points
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at this stage are added to a proto-track, a cloud of un-related 3D points that correspond to

non-zero pixels. The point within the new found points that is the furthest away from the

current seed is now used as the new seed. The procedure is iterated as long as new points

can be found ensuring the explored region pushes as far as possible along the track.

The points in the proto-track are not ordered and do not follow a linear path, zig-zagging

back and forth within the track thickness. The next step orders the points by linking each

one to its most likely neighbor. The next neighbor is found by minimizing a score ,

score = 5 · L1 + 0.1 · L2 + 2 · (2− cos θ)− 10 · (2− cosφ). (8.3)

The distances L1 and L2, as well as the angles θ and φ are summarized in Fig. 8.56a.

Once the points in the proto-track have been ordered, there is a logical path from one

point to the next, and some points are rejected as they are not the best candidates according

to the score function. A second pass through the track smooths the path and makes the

more direct based on several criteria:

• a new set of points is created by performing a rolling average of two consecutive points,

• the new set is ordered by moving to the closest neighbor,

• the new point must be closer to the end point than the previous one,

• the distance from previous point cannot be more than 5 cm, indicating a possible

jump to another nearby track,

• the points that deviate by less than 0.5 cm from the line between points n-1 and n+1

are removed.

These operations are then iterated as long as a new track is found. An example of a

reconstructed 1µ1P event is shown in Fig. 8.7. Two tracks are found, corresponding to the

trajectory of a muon and a proton. The tracking algorithm is able to follow both tracks to

their true end points inside the detector as well as cross two regions of dead wires.
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The distances L1 and L2, as well as the angles ✓ and634

� are summarized in the cartoons on Figure 11. The635

dots represent the set of 3D points in the proto-track.636

The black dots are the points that have been sorted637

through, and the light blue dots are the remaining638

un-sorted points. The green and red dots correspond639

to the vertex and end of track respectively. The end640

point is selected as the 3D point the furthest away from641

the vertex. The red broken line corresponds to the path642

found within the sorted 3D points. For each candidate643

within the points that are still un-sorted (here the dark644

blue point) the two lengths and angles are computed :645

L1 is the distance to the last selected 3D point, L2 is646

the distance to the end of the proto-track, ✓ is the angle647

from the last two sorted points to the candidate, and �648

is the angle between the candidate, the last sorted point,649

and the end of the proto-track. Once the points in the650

proto-track have been ordered, there is a logical path651

from one point to the next, and some points are rejected652

as they are never the best candidates. However, at this653

point, the track still zig-zags and is formed by too many654

3D points to be a good representation of the particle655

path, so a second stage is required.656

657

L1
L2

φ

θ

FIG. 11. Once the set of uncorrelated 3D points is found, a
sorting algorithm finds a logical path. From a sorted point,
the other candidates (here dark blue point) are evaluated
based on the distance to already sorted points (black points),
the remaining distance to the end of the track (red point) and
the two angles, with respect to the last sorted points (✓) and
to the end of the track (�). The green point represents the
vertex and the light blue points the points of the found set
that have not been sorted through yet.

The second stage smooths the path and makes it more658

direct. We loop through the set of 3D points, rejecting659

superfluous points based on several criteria:660

• a new set of point is created by performing a rolling661

average of two consecutive point,662

• the new set is ordered by moving to the closest663

neighbor,664

• the new point must be closer to the end point than665

the previous one,666

• the distance from previous point cannot be more667

than 5 cm, this indicates a possible jump to another668

near-by track,669

• the points that deviate by less than 0.5 cm from the670

line between points n-1 and n+1 are removed.671

B. Finding the other tracks672

These operations are then iterated as long as a new673

track is found. To prevent the algorithm from finding674

the same track multiple times, the pixels corresponding675

to a found track are masked in the ADC image. Two676

regimes are used to mask the pixels.677

• If the 3D points are within 2 cm of the vertex :678

pixels within a 3-pixel sleeve around the projected679

track on each plane are erased.680

• If the 3D points are beyond 2 cm of the vertex :681

pixels within a 6-pixel sleeve around the projected682

track on each plane are erased.683

Pixels are erased on a smaller sleeve close to the vertex684

in order to allow the algorithm to be e�cient at finding685

tracks that overlap, i.e. that would have a small686

projected angle, in one of the three planes.687

688

Once no new track is found, we iterate the process to689

the end points of the tracks already found. Indeed, the690

end points were selected as the point the furthest away691

from the vertex, but in some cases, if multiple scattering692

cases the track to curl up, the actual end of the track is693

not the furthest point. Starting at the end of a found694

track and looking for a missing portion of track helps695

reducing these cases. The two portions of the same tracks696

are then put together in a single new track.697

C. Self-diagnostic698

Once all the tracks associated with a vertex have been699

found, it is important to recognize and possibly reject700

cases where the reconstruction failed.701

This cross-check relies on a set of random points thrown702

on a spherical shell of radius 3 cm at the end point of each703

track. Only the forward going points with a solid angle of704

65� are kept. For each track, the fraction of points that705

project on pixels corresponding to dead wires, empty pix-706

els and pixels with charge deposited is evaluated, and a707

label is attributed to the end point on each plane. Fig-708

ure 12 shows the three possible case we distinguish. The709

black dots and line correspond to the projection on a710

given wire plane of the reconstructed 3D points, the col-711

ored pixels are the charge deposition, and the uniformed712

blue region correspond to dead wires.713

a.

b.

Figure 8.56: (a) Dots represent the set of 3D points in the proto-track. The black dots are

the points that have been already sorted, and the light blue dots are the remaining unsorted

points. The green and red dots correspond to the vertex and end of track respectively. The

end point is selected as the 3D point the furthest away from the vertex. The red line

corresponds to the path found within the sorted 3D points. For each unsorted point (dark

blue point) the two lengths and angles are computed : L1 is the distance to the last selected

3D point, L2 is the distance to the end of the proto-track, θ is the angle from the last two

sorted points to the candidate, and φ is the angle between the candidate, the last sorted

point, and the end of the proto-track. (b) Tracking algorithm following a track using the

stochastic search procedure.
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8.7.2 Track Efficiency

The efficiency of the track finding with respect to the kinetic energies of the individual

particles at the vertex is shown in Fig. 8.57. The track efficiency is defined as the ratio of

events with at least 1 track matched to the MC particle divided by the number of events.

A track is considered reconstructed if the tracking algorithm follows a particle longer than

5 cm and ends near a particle’s true end point.
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Figure 8.57: Tracking efficiency as a function of kinetic energy for proton (left) and muon

(right).

Both efficiencies display a downward trend as the kinetic energy increases which is linked

to the increased probability of encountering a failure as the track length increases. Fig. 8.58

shows the evolution of the tracking efficiency with respect to the true neutrino energy. The

average efficiency of the track reconstruction is (75.5 ± 0.9)% over the full energy range,

however, a downward trend is visible, compatible with the behavior observed in the muon

and proton single-particle efficiencies from Fig. 8.57. The efficiency within the energy range

of interest to a low energy analysis [200− 500] MeV is (80± 1)%

8.7.3 Angular Resolution

The track angle is estimated from the first 15 cm of the track near the vertex. The vector

from the vertex to mean track position describes the path of the particle at short range.

The angles φ, projected angle in the (X,Y) plane, and θ ,angle with respect to the beam
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Figure 8.58: Tracking efficiency as a function of true neutrino energy for combined proton

and muon track reconstruction.

axis, are evaluated for each track as described in Fig. 8.59.

φ2

X
Y Z
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θ2

Figure 8.59: Track angle definition for φ and θ with respect to the MicroBooNE detector

geometry.

Fig. 8.60 and Fig. 8.61 show the angular errors in the track reconstruction of protons

and muons in 1µ1P interactions.

8.7.4 Energy Reconstruction

The reconstruction of 3D tracks is used to obtain the track energy for the 1µ1P topology.

The 3D length of the track is computed by summing the distance between each consecutive



CHAPTER 8. IMAGE BASED NEUTRINO RECONSTRUCTION 115

 / ndf 2χ  35.88 / 23
Constant  4.7± 130.1 

      µ  0.224±1.278 − 
   σ  0.189± 8.021 

100− 0 100
)° (φAngular error on proton 

0

50

100

150

)°
en

tr
ie

s(
/2

.0

 / ndf 2χ  35.88 / 23
Constant  4.7± 130.1 

      µ  0.224±1.278 − 
   σ  0.189± 8.021 

100− 0 100

)  °true(
100−

0

100

) 
 

°
re

co
.(

0

18
 / ndf 2χ  74.99 / 18

Constant  10.8± 272.5 
      µ  0.11012± 0.09199 
   σ  0.112± 3.926 

100− 0 100
)° (φAngular error on muon 

0

100

200

300

)°
en

tr
ie

s(
/2

.0

 / ndf 2χ  74.99 / 18
Constant  10.8± 272.5 

      µ  0.11012± 0.09199 
   σ  0.112± 3.926 

100− 0 100

)  °true(
100−

0

100

) 
 

°
re

co
.(

0

31

Figure 8.60: Error on the reconstruction of φ for protons (left) and muons (right). The

red line corresponds to a Gaussian fit of the central peak. A resolution of (7.9±0.2) deg.

for protons and (4.1±0.1) deg. for muons is achieved. The inserts in the upper left hand

portion of the plot show the track by track correlation between the reconstructed and the

true φ angle.

 / ndf 2χ  115.3 / 23
Constant  10.6± 251.6 

      µ  0.12037±0.01649 − 
   σ  0.134± 4.204 

100− 0 100
)° (θAngular error on proton 

0

100

200

300

)°
en

tr
ie

s(
/2

.0

 / ndf 2χ  115.3 / 23
Constant  10.6± 251.6 

      µ  0.12037±0.01649 − 
   σ  0.134± 4.204 

0 50 100 150

)  °true(
0

50

100

150

) 
 

°
re

co
.(

0

53
 / ndf 2χ   52.7 / 16

Constant  11.7± 322.1 
      µ  0.0932±0.5489 − 
   σ  0.083± 3.416 

100− 0 100
)° (θAngular error on muon 

0

100

200

300

)°
en

tr
ie

s(
/2

.0

 / ndf 2χ   52.7 / 16
Constant  11.7± 322.1 

      µ  0.0932±0.5489 − 
   σ  0.083± 3.416 

0 50 100 150

)  °true(
0

50

100

150

) 
 

°
re

co
.(

0

28

Figure 8.61: Error on the reconstruction of θ for protons left) and muons (right). The red

line corresponds to a Gaussian fit of the central peak. A resolution of (4.2±0.1) deg. for

protons and (3.5±0.1) deg. for muons is achieved. The inserts in the upper right hand

portion of the plot show the track by track correlation between the reconstructed and the

true θ angle.

point along the track. The length is then converted to kinetic energy using the known

stopping power of each type of particle in liquid argon. The relationship between a proton
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and muons range and its kinetic energy is shown in Fig. 8.62 obtained from [39].
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Figure 8.62: Kinetic energy as a function of range in liquid argon (LAr) for proton (blue)

and muon (red) particles.

Fig. 8.63 shows the relative error made when reconstructing the energy of one of muon

and proton tracks in 1µ1P events as a function of the true particle kinetic energy using

the range table lookup. The track is attributed to a proton or muon using MC truth

information.
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Figure 8.63: Relative difference between the reconstructed energy and the true energy as a

function of the true kinetic energy at the single-track level proton (left) and muon (right)

tracks.

The main populations are flat with a relative error centered on (KEreco−KEtrue)/KEtrue =

0 showing no systematic bias.
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To estimate the full energy of the neutrino, a range based definition is used,

Erangeν = KEp + KEµ +mµ +mp +B −mn, (8.4)

where B ∼ 40 MeV is an effective nuclear binding energy [40]. Fig. 8.64 shows a comparison

of the true and reconstructed energy. Each slice in true energy is fitted by a gaussian around

its mean value. The fit results are shown as the black dots, and the errors on these dots

correspond to the σ of the Gaussian. A linear fit performed on the result shows a good

linearity, with a slope factor of 0.97 ± 0.01 and an offset of (19 ± 6) MeV, for a neutrino

energy range of [200− 1000] MeV.
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Figure 8.64: Left : Comparison of the reconstructed energy to the true MC energy. Right :

Evolution of the resolution as a function of the true energy.

Fig. 8.64 also shows the evolution of the fractional resolution (σ/µ from the previous

Gaussian fits) as a function of energy. The errors are the plot are errors on the parameters

estimated by the Gaussian fit. The relative resolution follows a stochastically dominated

reconstruction in 1/
√
E.

8.7.5 dE/dx Reconstruction

For each 3D point, the local charge deposition, dQ/dx, for a given plane is computed by

integrating the values of non-zero pixels in a 2 pixel radius around the projection of the 3D

point on that plane.
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Once the local charge deposition around each 3D point has been found for each of the

three planes, other physics features for particle identification can be derived such as the

average dQ/dx:

〈dQ
dx
〉 =

1

n

∑

i<n

(
dQ

dx

)

i

(8.5)

where n is the number of reconstructed 3D points and

(
dQ

dx

)

i

the local ionization of a given

point i using only the collection plane information.
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FIG. 13. Average charge deposition along each reconstructed
track. The red and blue distributions represent respectively
the tracks with the highest and lowest average ionization in a
given vertex.

is overlaid onto the images.774

VIII. OBSERVABLE ESTIMATIONS AND775

PERFORMANCE EVALUATION776

A. Local ionization777

For each 3D point, the local ionization for a given plane778

is computed by integrating the values of non-zero pixels779

in a 2 pixel radius around the projection of the 3D point780

on that plane. The values measured on the three planes781

can then be used individually, or summed across planes.782

A scale factor 3/N is applied where N is the number of783

planes on which a non-zero value was found. This scale784

factor allows to correct for a possible plane in which the785

3D point projects onto an un-responsive region.786

Once the local charge deposition around each 3D point787

has been acquired for each of the three planes, one can788

compute the Average ionization as the local ionization789

averaged over the reconstructed 3D points of a given790

track.791

The average ionization reconstructed for 1µ1p simu-792

lated ⌫µ events in MicroBooNE is shown in Figure 13.793

At this stage, no particle identification has been per-794

formed, the blue and red populations have been separated795

by identifying the muon as the track with the lowest av-796

erage ionization within the pair of reconstructed tracks797

(blue distribution) and identifying the proton as the track798

with the highest average ionization (red distribution). It799

is important to note that these particle identifications are800

relative within a pair of reconstructed particles, assum-801

ing one is a proton and the other a muon. All vertices802

with two reconstructed tracks will have tracks identified803

as muon or proton with that method. A more definitive804

particle identification will be performed later on in the805

analysis chain.806
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FIG. 14. Description of � and ✓ angles for each particle in
MicroBooNE. � is the angle of a track projected in the (X,Y)
plane with respect to the X axis, and ✓ is the angle of a track
with respect to the beam axis (Z axis).
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FIG. 15. The di↵erence between the reconstructed opening
angle and the true opening angle shows a (5.6 ± 0.2)� resolu-
tion. The insert shows the linearity of the reconstruction.

B. Angle Estimation807

For each individual track, the 3D points within 15 cm808

of the vertex are averaged. The vector from the vertex809

to that mean point describes the path of the particle at810

short range. The angles � (projected angle in the (X,Y)811

plane) and ✓ (angle with respect to the beam axis) are812

evaluated for each track as described in Figure 14.813

Once the angle of each track has been computed, an814

opening angle can be evaluated. Figure 15(a) shows a815

comparison of the reconstructed opening angle and the816

true opening angle. An overall resolution of (5.6 ± 0.2)�817

is found. The insert shows the linearity of the opening818

angle reconstruction.819
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Figure 8.65: Average pixel intensity along each reconstructed track defined in Equation 8.5.

The red and blue distributions represent the tracks with the highest (proton like) and lowest

(muon like) average ionization.

The average ionization reconstructed for 1µ1P simulated events in MicroBooNE is shown

in Figure 8.65. Two underlying distributions are shown. The blue and red distributions are

tracks matched to proton and muon particle respectively. The blue and red distributions

can be separated by applying a cut on the average ionization as an example of particle

identification at the track level.

Once the local charge deposition dQ/dx is obtained, one can estimate the local deposited

energy dE/dx using the so-called modified box model [41] relationship,

dE

dx
=
ρE
β

[
exp

(
C
dQ

dx

βWion

ρE

)
− α

]
, (8.6)

where,

• ρ = 1.38 is the density of the liquid argon,
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• E = 0.273kV/cm is the electric field, and

• Wion = 23.6× 10−6MeV is the ionization energy.

The parameters α and β are detector-independent and are expected with the values,

α = 0.93± 0.02 (8.7)

β = 0.212± 0.002 (kV/cm)(g/cm2). (8.8)

Finally, C is a calibration factor accounting for the pixel ADC count to e−/cm.
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Figure 8.66: Estimation of the recombination parameters for the modified box model. The

2D histogram shows for each reconstructed 3D point over a sample of proton tracks, the

pixel intensity as a function of the expected dE/dx. The black dots correspond to the

average of the distribution for each slice in expected dE/dx. The blue line represents the

expected profile, and the red line is a fit of the model to the black dots.

Fig. 8.66 shows the relationship between the measured dQ/dx along the reconstructed

proton candidate tracks and the expected dE/dx. For each point along the reconstructed

tracks, the measured dQ/dx is shown as a function of the expected dE/dx, estimated based

on the residual length of the point (i.e. the distance along the track between that point and

the end of the track).

The black dots correspond to the mean value in dQ/dx for each vertical slice in dE/dx,

with the error bar corresponding to the uncertainty on the mean position. The blue solid line

corresponds to the expected relationship based on Equation 8.6 and the α and β parameters
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from [41]. The red line corresponds to a fit of Equation 8.6 to the mean of the distribution.

The parameters α, β and the calibration scale parameter are extract from simulated protons

and found to be,

α = 0.93± 0.04, (8.9)

β = 0.217± 0.003(kV/cm)(g/cm2), (8.10)

C = 2059± 31 (e−/cm)/pixel. (8.11)

Using these parameters the dE/dx at each reconstructed point can be converted from

dQ/dx along tracks. Figure 8.67 shows the dE/dx profile as a function of the residual

length for protons candidates, and for the corresponding muon candidates. Overlaid are

the expected curves from [39].
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Figure 8.67: Distributions of reconstructed dE/dx as a function of residual length for proton

(left) and muon (right) tracks. The black and red lines respectively show the expected muon

and proton dE/dx versus residual length curves.

To correct for detector non-uniformities in charge collection a dQ/dx correction factor is

estimated using cosmic ray muon tracks. The LArTPC response is not uniform due to many

factors: gain variation, dead wires, shorted wires, space charge effects, and attenuation due

to impurities. After removing these effects at a low level, the cosmic ray muons can be used

to remove residual non-uniformity. In this study we estimate a global dQ/dx calibration

by mapping the Y-Z spatial uniformity in charge collection. First, two to three meters long

muon tracks are reconstructed using externally triggered cosmic ray data and a dQ/dx value
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is calculated in a segmented location along the track. Next, the Y-Z plane is divided into

cells. The correction factor per cell is calculated as the average dQ/dx per cell divided by

the global average of dQ/dx. The result is shown in Fig. 8.68.
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Figure 8.68: Correction factor as a function of the Y-Z detector space defined as the ratio

of dQ/dx in each divided by the global average dQ/dx.

Most cells feature an average calibration constant less than 1. A band of calibration

factor larger than one can be observed in the low Z region of the detector. This region

is associated with poor charge collection due to the presence of dead or noisy wires. An

average calibration factor of approximately 0.8 is found over the Y-Z space.

8.8 1e1P Reconstruction

8.8.1 Topological Features

Low energy 1e1P neutrino events feature two particles of distinct topological character

connected at a single point in 3D space. In this algorithm the reconstruction and analysis

are restricted to a true neutrino energy range below 600 MeV, the energy range of the

predicted MiniBooNE low energy excess. In this energy regime the proton and electron

particle each have simple topological features which can be used to separate signal from
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background.

The electron particle exhibits two distinct feature as it exits the neutrino interaction

vertex as an electromagnetic shower. First is the presence of a tree-like structure char-

acterized by a straight ionization pattern, called a trunk, near the vertex point and then

evolving to a branching pattern. Second is the emission of electromagnetic radiation above

a “critical” kinetic energy. Two effects contribute to the stopping power for electrons and

determine it’s energy loss in liquid argon as shown in Fig. 8.69.

Figure 8.69: Energy loss for electrons as a function of initial kinetic energy.

The first effect is electron collisions with electrons located in the argon orbital cloud as

the electron propagates through the bulk. This effect dominates the electron stopping power

below approximately 30 MeV kinetic energy. Above this so called critical energy, the electron

will produce radiation in the form of photons. This radiation is called bremsstrahlung and

produces a topological pattern in liquid argon. This patten involves an empty (charge-less)

gap between the photon emission point, and where the photon converts into an electron-

positron pair where a electromagnetic cascade begin to develop.

The electron deposited energy spectrum associated with low energy 1e1P neutrinos is

shown in Fig. 8.70. The energy spectrum peaks at approximately 200 MeV and extends up

to approximately 500 MeV. In select true shower deposited energy bins, an event display

from the Y plane is shown below the energy spectrum. As the shower energy is increased, the

electromagnetic shower features described above develops. First, the electron shower grows
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in physical extent and contains an increasing number of prongs as well as becoming more

tree like. Second, the electron begins to emit increasingly large electromagnetic radiation

depositions.

Edep Electron = 67 MeV
Edep Proton = 99 MeV

Edep Electron = 138 MeV
Edep Proton = 84 MeV

Edep Electron = 214 MeV
Edep Proton = 235 MeV

Edep Electron = 346 MeV
Edep Proton = 128 MeV

Edep Electron = 416 MeV
Edep Proton = 105 MeV

Figure 8.70: True shower deposited energy distribution for < 600 MeV 1e1P interactions.

Event displays from five energy bins are shown to illustrate the electron features described

in Section 8.8.1.

The lowest energy bin in Fig. 8.70, which contains events both above and below the

electron critical energy for radiation, represents approximately 5% of interactions. The

feature presence of a tree like structure, and presence of radiation emitted in the forward

direction of the electron are targeted in reconstruction to identify an electron particle.

The proton particle’s ionization pattern for low energy 1e1P interactions is characterized

by a straight line with increasing charge deposition toward the end of the track. Shown

in Fig. 8.71 is the proton deposited energy for 1e1P events below 600 MeV. The energy
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distribution peaks in the second bin of 50 to 100 MeV deposited charge and falls off to 300

MeV. In three energy bins an event display shows a proton particle’s line-like topological

structure. As the proton particle increases in deposited energy, the proton track increases in

length while remaining straight. As the proton travels outward from the vertex an increase

in the ionization per unit length can be seen. Both the line like structure and the dE/dx

features are targeted in algorithm to identify a proton particle.

Edep Electron = 167 MeV
Edep Proton = 61 MeV

Edep Electron = 170 MeV
Edep Proton = 285 MeV

Edep Electron = 343 MeV
Edep Proton = 118 MeV

Figure 8.71: True proton deposited energy distribution for < 600 MeV 1e1P interactions.

Event displays from three energy bins are shown to illustrate the proton features described

in Section 8.8.1.

Finally, the 1e1P algorithm provides improved particle clustering capability by allevi-

ating some inefficiencies in the generic clustering algorithm. The particle clustering algo-

rithm developed in the vertex finding code is incapable of associating disconnected charge

to clustered particles. For shower type particles which typically feature the presence of
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bremsstrahlung, the disconnected charge will not be optimally clustered. Additionally, the

particle clustering algorithm is heavily impacted by interference of the cosmic ray tagging

algorithm described in Section 8.4.4. Performing topological analysis on a particle cluster

which may have some component truncated by the cosmic ray tagging algorithm will not

provide complete features. In the 1e1P algorithm the cosmic ray tagging is turned off.

8.8.2 1e1P Algorithm

The 1e1P algorithm is a LarOpenCV based traditional algorithm to reconstruct less than

600 MeV neutrino events. By restricting our target neutrino energy range to below 600 MeV

the algorithm is applied in a restricted region around the 3D reconstructed vertex point.

This region fully contains the ionization pattern associated with the electron and proton

particle. The crop region around the vertex is set with an edge length of 120 centimeters

(400 pixels) such that activity around the vertex is captured at least 60 centimeters (200

pixels) in each direction. A crop size of 60 centimeters has been optimized using a Monte

Carlo truth level study of low energy 1e1P events as shown in the left plot of Fig. 8.72.

The truth length distribution projected on the Y plane for proton and electrons is shown

for sub 800 MeV 1e1P events. Both the electron and proton particle complete their charge

deposition within 200 pixels from their true vertex point. The right hand plot of Fig. 8.72

shows a low energy 1e1P event on the Y plane. A typical low energy 1e1P event features

an electron of approximately 20 centimeters (70 pixels) and a proton of 3 centimeters (10

pixels).

The location of the 3D vertex is placed at the center of the image and provides the

starting point for electron and proton feature finding. An example LArCV image input into

the 1e1P algorithm is shown in Fig. 8.73.

The image displays a 225 MeV 1e1P neutrino which produces a single proton and elec-

tron as projected onto the three MicroBooNE TPC planes. Each plane image is a 60

centimeters square crop around the vertex and centered at the reconstructed vertex lo-

cation. One electron of 174 MeV is emitted producing a branch like structure and some

amount of radiation. Connected to the electron is a 50 MeV proton which appears bright

red (indicating high charge deposition). Also present in the image are cosmic rays which
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Figure 8.72: Left : Distribution of electron (red) and proton (blue) true particle length as

projected onto the Y plane for sub 800 MeV 1e1P interactions. Right : A 370 MeV 1e1P

interaction with X and Y pixel scale. The charge deposition fits in a 400 x 400 pixel window

centered around the vertex.
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Figure 8.73: An example input into the 1e1P algorithm showing a 400 x 400 pixel crop

around the vertex in each of the three planes.

can either pass through the image or enter the image and stop. In some cases, the cosmic

ray will be fully contained in the image. Cosmic rays observed in these image crops are
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easy for the human eye to distinguish from electron neutrinos and a simple algorithm has

been developed to remove them.

In a typical image crop, cosmic rays pass through from one edge to another, or enter

the image edge and stop inside. An algorithm identifies cosmic rays using 2D information

only to alleviate reconstruction inefficiencies associated with 3D track finding. The three

steps for identifying cosmic rays are shown in Fig 8.74.

edge 1

edge 2

Step 1 Step 2

xing dead wire

xing cosmic

Step 3

Figure 8.74: Steps for identifying cosmic ray tracks within the image crop described in

Section 8.8.2

First, edge crossings are identified on the image boundary by locating charge on the

border as shown in Step 1. A 6 centimeter line is drawn on the image to best estimate the

2D direction of the line at the border. This is done by optimizing the number of pixels for

which the 2D line covers in a half circle around the border point. The lines are 3 pixels
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thick and are shown in purple color. In the Step 1 a total of 10 edges are identified. Next,

in Step 2, the lines are followed in 2D using a custom line following algorithm. Starting

at the border point, the line is followed using a series of graduated circles. The algorithm

moves from one point to the next by minimizing the distance between the previous circle

crossing point and the next crossing point. The algorithm is always attempting to follow

the straightest possible path but is allowed to bend gradually to handle the effect of cosmic

rays curving due to the space charge effect. The algorithm can also cross dead wires by

changing its circle size to step over the dead wire region or by using a custom algorithm

to compute a linear extension for the cosmic ray track inside the dead regions. The full

cosmic ray tagged result is shown in Step 3. The red lines are an output of the cosmic ray

tagging algorithm’s attempt to follow the cosmic ray from the image boundary. There are

three features to note. First, the cosmic tagger can cross dead wires as indicated by the

yellow arrow. Second, the tagger can cross other cosmic rays in the same plane. This is

because the algorithm is trying to follow a straight line and is penalized for deviating from

a straight trajectory. Third, the cosmic ray tagger does not tag the neutrino interaction in

the upper right portion of the image. Here you see the red line pass by the electron particle

as well as the associated electrons radiated photon. The red pixels are tagged, and removed

from the image leaving only the neutrino interaction pixels and various delta rays attached

to the tagged cosmic ray tracks. Examples of the cosmic ray tagger for reconstructed 1e1P

events is shown in Fig 8.75.

Once the cosmic rays have been tagged and removed from the image the algorithm

reconstructs particle clusters using an optimized method for low energy 1e1P events as

described in Fig. 8.76.

Step 4 of Fig. 8.76 shows the result of removing tagged cosmic pixels from the crop,

leaving only the neutrino interaction. Next, in Step 5, the pixels within 5 centimeters of the

vertex are identified. Using a circle crossing point method, clusters are uniquely identified

coming out of the vertex. A triangle shape is fit with floating base length and height

using an oriented bounding box algorithm to enclose the cluster. The triangle serves as a

generic shape to capture the physical extent of the particle in two dimensions and define

the rough direction of propagation. In Step 6 the 2D direction of each particle is optimized
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Figure 8.75: Examples of the cosmic ray tagging algorithm applied to six reconstructed

vertices. Top Row : Cosmic algorithm crosses a proton particle of a 1e1P interaction. Cosmic

algorithm crosses the trunk of an electron particle. Cosmic crosses both the electron and

proton of a 1e1P interaction. Bottom Row : Cosmic algorithm follows a stopping muon

until the track bends too severely, stopping before the true end point. A stopping muon

is completely contained inside the image and not tagged by the cosmic algorithm. Cosmic

tagger touches a 1e1P interaction vertex.

by perturbing the location of the 2D projected vertex (red dots) and drawing a line (cyan

color) between the perturbed vertex and the base of the fit triangle. The 2D line is scanned

inside the triangle to maximize the number of non-zero pixels enclosed inside. The result

is a line which best represents the estimated 2D direction of the particle trajectory. The

benefits for using a triangle and 2D line to represent the initial particle cluster rather than a

generic cluster are two fold. First, it gives the particle a well defined temporal extent which
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Step 4 Step 5 Step 6

Figure 8.76: Steps 4-6 of the 1e1P algorithm as described in Section 8.8.2.

improves the chance of matching across planes. Second, it allows the cluster to be connected

across tagged cosmic rays and dead wire regions by recursively extending the line and re-

fitting the bounding triangle until all charge associated with the particle is collected. With

the ability to extend across these two regions, the maximum amount of connected charge

can be identified as coming from the vertex point giving a better topological representation

of the particle.

After the clusters have been identified on each plane, the 2D lines are matched across

planes using the time overlap algorithm using the method described in Section 8.6.4. Particle

1 (P1) and particle 2 (P2), have been identified using the algorithm as shown in Fig. 8.77.

P1 has been reconstructed using two planes of information, the U and Y plane. P2 has

been reconstructed using 3 planes of information, the U, V and Y planes.

8.8.3 Topological Analysis

A number of topological parameters are estimated for each reconstructed particle to identify

the presence of an electron and proton particle. For all particles attached to the vertex the

momentum is reconstructed. In addition, the 3D length and dE/dx are characterized.
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Figure 8.77: The final step of the 1e1P algorithm as described in Section 8.8.2. Two particles

have been reconstructed and matched across planes.

To determine if an electron particle is present at the vertex the cluster shape is analyzed

to detect features shown in Fig. 8.78 using a custom set of OpenCV based algorithms. The

electron shower radiation is identified by extending a triangle in the 2D direction of the

cluster whose length is a function of the radiation length and the length of the trunk as

shown in Fig. 8.78a. Charge which is enclosed by this extended triangle is compared across

planes to determine if the pixels are 3D consistent. Topological features such as the number

of branch points and prongs extending off a common trunk are identified to characterize the

charge deposition profile as the particle exits the vertex shown in Fig. 8.78c. In Fig. 8.78[d,e]

features such as determining the fraction of empty area inside the convex hull as well as the

number, and length of the defect lines in the trunk cluster used to understand if a tree like

structure is present.
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To determine if a proton particle is present at the vertex the cluster is simply compared

with a straight line as shown in Fig 8.78b. A low energy proton particle exhibits a straight

line trajectory in the LArTPC image as described in the previous section. To know if a

straight line exists coming out of the vertex, a straight line of thickness 3 pixels is drawn

from the 2D vertex location to the cluster end point. If the underlying particle cluster is

consistent with the drawn straight line, in the sense of number of pixels covered by the

line, then the particle is straight. Testing a straight line template is an economical way to

determine if the cluster is straight and avoids a principle component analysis of the cluster.
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Branch points
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Figure 8.78: Topologically reconstructed parameters for electron and proton particles using

the 1e1P algorithm described in Section 8.8.3

8.8.4 Angular Reconstruction

The 3D direction of a shower is reconstructed by transforming the two 2D directions re-

constructed for the pair of particles into 3D coordinates. The 2D direction on each plane

is calculated by measuring the charge-weighted 2D direction with respect to the vertex
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location (xvtx, yvtx) of all pixels associated with the particle on a given plane according to,

xp =
1

∑Npixel

i=0 Qi
×
Npixel∑

i=0

Qi(xi − xvtx) (8.12)

yp =
1

∑Npixel

i=0 Qi
×
Npixel∑

i=0

Qi(yi − yvtx), (8.13)

where the components xp and yp represent the vector components of a particle 2D direction

on plane p. Given two 2D weighted directions, the 3D direction is calculated using geometric

relations between the planes and clusters. The reconstructed 3D angle of the particle with

respect to the beam direction is a useful input into the CCQE formula which can be used

to estimate the neutrino energy.

The ability to resolve the proton direction with respect to the beam is shown in Fig. 8.79

for 1e1P events with true neutrino energy less than 800 MeV. A magenta line at y = x is

used to guide the eye.
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Figure 8.79: Right : Reconstructed versus true proton angle with respect to the beam for

a sample of 1e1P events. The magenta line shows y = x to characterize the bias. Left :

Fractional difference between the reconstructed and true angle with a double gaussian fit.

The angular resolution is approximately 4%.

Proton particles produced in low energy 1e1P interactions are primarily forward going

with respect to the beam. Good agreement is found between the reconstructed proton

angle with respect to the beam versus true angle. The fractional resolution of the proton

angle is approximately 4% as estimated from a double gaussian fit to the fractional difference

between the reconstructed and true angle. The fractional angular resolution increases as the
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proton kinetic energy decreases since the proton particle spans less pixels, as reconstructing

the proton direction becomes challenging.

The ability to resolve the electron direction with respect to the beam is shown in

Fig. 8.80. A good agreement is found between the reconstructed electron direction and

the true direction.
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Figure 8.80: Right : Reconstructed versus true electron angle with respect to the beam for

a sample of 1e1P events. The magenta line shows y = x to characterize the bias. Left :

Fractional difference between the reconstructed and true angle with a double gaussian fit.

The angular resolution is approximately 6%.

In low energy 1e1P events, the electron can take on any angle with respect to the

beam axis. The fractional resolution of the electron and is approximately 6%. There is no

significant dependence of the electron shower direction with energy.

8.8.5 Energy Reconstruction

The electron and proton energies are estimated for 1e1P interactions by integrating all of

pixels associated with the collection-plane belonging to the particle in the LArCV image.

The summed pixel count, representing the underlying charge deposition, is converted to

MeV by a linear calibration. The calibration for electron and proton particles for 1e1P

interactions is shown in Fig. 8.81.

For each particle type, the integrated charge distribution is binned in both true deposited

energy and summed pixel value. In each true energy bin a gaussian function is fit to the

pixel value distribution. The mean position of the gaussian fit is shown as the blue dot with
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Figure 8.81: Proton (top) and electron (bottom) summed collection plane pixel value versus

true deposited energy for low energy 1e1P events. In each true energy bin a gaussian is fit

to the pixel value distribution to estimate the mean and spread (blue points). A linear fit

(magenta line) is optimized for the blue points.

vertical uncertainty given by the standard deviation. A two parameter fit is optimized for

the blue points. The slope from each particle fit are then averaged and a single parameter

fit is optimized to determine the pixel value offset at 0 MeV.

The fit represents the calibration between the pixel and MeV scale. The relations for

converting pixel to MeV scale for electron and proton particles are described as,

Ecal
proton = (1/72.66× Epixel + 30.68) MeV

Ecal
electron = (1/72.66× Epixel − 27.14) MeV.

A difference in the zero point energy can be attributed to a difference in charge recombina-
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tion between electron and proton particles. The fraction energy resolution for electron and

proton particles is shown as a function of true particle energy in Fig. 8.82.
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Figure 8.82: Fractional energy resolution for proton (left) and electron (right) particles as

a function of true deposited energy. An approximately 10% and 20% energy resolutions are

observed for proton and electron particles respectively using calorimetry.

Both proton and electron energy resolutions are approximately 10% and 20% respec-

tively. In the method described above, an accurate estimate of the electron and proton

energy can be determined without the need for hit based reconstruction.

8.8.6 dE/dx Reconstruction

The dE/dx for 1e1P events is reconstructed by estimating the dQ/dx as a function of length

for each particle and applying a calibration factor. For each particle reconstructed at the

vertex point, a 3D line is extended from the vertex point in the direction of the reconstructed

particle direction. The line is segmented into units of 0.3 cm and projected onto each of

the planes. Next, the charge is projected perpendicularly onto the line. In each segment

the median pixel value is chosen and then corrected for the pitch of the track with respect

to the wire plane. An example spectrum for a 1e1P interaction is shown in Fig. 8.83.

Proton and electron dQ/dx spectra are reconstructed using a straight line hypothesis.

The proton particle exhibits a larger baseline value than the electron, and a Bragg peak

is typically observed. The example electron particle remains at a minimally ionizing value

through a region of dead wires until its showering point. A truncated mean algorithm is

applied to each particle’s charge spectrum to smooth out local distortions in the charge
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Figure 8.83: Left : dQ/dx profiles as a function of particle length for proton (blue) and

electron (red). The dotted line represents the binned charge deposition per length and the

solid line is a truncated mean for smoothing. Right : The 1e1P events corresponding to the

dQ/dx profiles shown on the left.

profile. The dQ/dx spectrum are converted to dE/dx using the MeV scaling factor derived

in Section 8.8.5 and by applying an average dQ/dx spatial correction factor. The result is

shown in Fig. 8.84 for a sample if low energy 1e1P events.
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Figure 8.84: Electron (blue) and proton (red) median dE/dx value for a simulated sample

of 1e1P events. A median of ∼2.2 MeV/cm and ∼5 MeV/cm is observed.

The proton dE/dx is estimated as the average dE/dx over the full proton track while

the electron dE/dx is estimated using the first 4 centimeters to avoid including charge past

an electrons showering point. The dE/dx profile as a function of residual range for protons
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is shown in Fig. 8.85.
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Figure 8.85: Proton dE/dx as a function of residual range. An increase in charge deposition

per unit length is observed toward the end of a proton’s track.

An increase in charge deposition as the proton nears its end point is observed consistent

with the Bethe-Bloch theory.

8.8.7 Flash Matching

The PMT optical system in MicroBooNE can be used for neutrino event reconstruction.

By matching the observed photo-electron spectrum with objects reconstructed in the TPC,

a good-ness of fit, χ2
PE, can be calculated. The χ2

PE can be used in neutrino selection to

determine if the interaction is consistent with the observed flash. For the 1L1P events,

the lepton and proton dE/dx profiles are reconstructed in 3D. The algorithm utilizes the

full muon and proton reconstructed track as described in Section 8.8.6. In the case of the

electron, a straight line hypothesis is used, as a detailed 3D reconstruction of the electron

shower past the trunk point is unavailable. At each binned dE/dx point, a library, called

the Photon Library, is used to estimate the light yield per particle type and light hypothesis

is estimated for each PMT in the optical system. The photon library is generated by seg-

menting the detector volume into “voxels” and simulating a photon density per voxel. The

photons in each voxel are then tracked through Rayleigh scattering, reflection, and absorp-

tion to the PMTs. The result of the simulation is a library of voxel visibility information

for each PMT. An cartoon flash match procedure for a 1µ1P event is shown in Fig. 8.86.
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Figure 8.86: Cartoon of a flash hypothesis is constructed of a 1µ1P interaction. A binned

dE/dx is reconstructed for the muon particle. Each charge deposition is converted to a

light yield using the Photon Library forming a light hypothesis per PMT.

The hypothesis PE spectrum is then compared to the first reconstructed flash object

for the beam window. A flash matching example for a well reconstructed 800 MeV 1e1P

interaction is shown in the left hand plot of Fig. 8.87 where a shape only χ2
pe is formed

between the hypothesis and the reconstructed (data) flash. A shape χ2
PE is better suited for

the comparison since the absolute normalization of PE using the Photon Library contains

uncertainty.

For well reconstructed 1e1P topologies we can expect 90% of the events to lie below a

χ2
PE of approximately 2 as shown in the right hand plot in Fig. 8.87.

8.9 Particle ID using a Convolutional Neural Network

8.9.1 Network Architecture

For single particle identification, two benchmark network architectures were studied: AlexNet

and GoogLeNet. In addition, two down sampling schemes were profiled. The best result,

defined as the highest particle identification accuracy over the five particles types, came



CHAPTER 8. IMAGE BASED NEUTRINO RECONSTRUCTION 140

0 5 10 15 20 25 30
PMT ID

0.000

0.025

0.050

0.075

0.100

0.125

0.150

PE
 F

ra
ct

io
n

2=0.49

Total PE=300.46
Hypothesis
Data

0 2 4 6 8 10
Shape 2

0.0

0.1

0.2

0.3

0.4

0.5

Ev
en

t 
Fr

ac
ti

on

1e1p

Figure 8.87: Example flash match for a 1e1P event. Left : The hypothesis (blue) spectrum

is compared to the reconstructed flash (black) and a shape only χ2 is formed. Right :

Distribution of shape only chi2 for a simulated sample of 1e1P events.

from using high resolution images with the GoogLeNet architecture. A new network, called

VGG16b, has been optimized on high resolution LArTPC images for improved particle

classification performance. An improvement of approximately 2 to 3 percentage points over

AlexNet and GoogLeNet are shown in Table 8.3.

Classified Particle Type

Network e− [%] γ− [%] π− [%] µ [%] proton [%]

AlexNet 73.6 ±0.8 81.3 ±0.8 84.8 ±0.5 73.1 ±0.8 87.2 ±0.5

GoogLeNet 77.8 ±0.8 83.4 ±0.7 89.7 ±0.4 71.0 ±0.8 91.2 ±0.4

VGG16b 82.9 ±0.7 86.4 ±0.8 90.7 ±0.4 74.8 ±0.7 90.8 ±0.4

Table 8.3: Single particle ID performance for high resolution LArTPC images for three CNN

networks. AlexNet and GoogLeNet results reproduced from the reference while VGG16b

results are new.

The Multi-PID network is implemented in the TensorFlow [42] framework and is shown

in Fig. 8.88, The network architecture is modelled off of the VGG16b network and consists of

5 blocks of convolution with an increasing number of neurons (filters) separated by rectified

linear units (ReLU) and average pooling procedures. Each convolution block retains a

filter size of 3x3 and features a stride 2 convolution application in the first operation of each

block. A single fully connected layer with 5 neurons is attached at the bottom of the network
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which outputs to a sigmoid function. The sigmoid function at the output layer models the

probability of each particle being present in the image as a Bernoulli distribution, with each

particle type being independent from one another. The Multi-PID network takes as input a

512 x 512 LArCV image, a crop centered at the reconstructed vertex, and returns a vector

of length 5 with particle presence probabilities in the image.

Figure 8.88: Multi-PID network architecture described in Section 8.9.1.

8.9.2 Network Training

The Multi-PID network is trained using a multi-particle generator simulation as described in

Section 8.5.2. The generator produces simulated 3D interaction vertices at random locations

inside the MicroBooNE TPC with no neutrino model dependence. Five types of particles

are simulated: electron, gamma, muon, pion, and proton. The particles are emitted with

isotropic momentum from the vertex with a random multiplicity of 1 to 4. The data set

consists of 95,000 images and contains the following energy distribution:

1. 80% of events are simulated with kinetic energy between 100 and 1000 MeV, except

for proton which is simulated between 100 and 400 MeV.

2. 20% of events are simulated with kinetic energy between 30 and 100 MeV, except for
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proton which is simulated between 40 and 100 MeV.

The dataset is separated into a training set with 45,000 events and a testing set with 40,000

images. A batch size of 5 images is used for training. The network is trained using stochastic

gradient descent for a period of 100 epochs for each 3 planes independently. The accuracy

on the training and test samples, and the loss curve are shown in Fig. 8.89.
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Figure 8.89: Network training for U (upper left), V (upper right), and Y (bottom) plane.

The blue and red curves show the accuracy on the train and test samples respectively. The

gold curve shows the loss value as a function of time.

The U and V induction planes exhibit plateaus in testing accuracy at approximately

80%. Over training is observed on the V plane as training sample accuracy diverges from

the testing sample accuracy toward the end of training. The Y plane performs the best

with testing accuracy approaching 85%. Weights for the Multi-PID network are selected
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before over training occurs at approximately 50 epochs.

8.9.3 Performance

The Multi-PID network is validated on simulated 1e1P and 1µ1P events to determine the

efficiency for identifying electron, muon, and proton particles. In practice, a cut on the

network score value is used to determine the presence of particle type. The exact score

value per particle type is optimized alongside hand designed features in Section 8.8 for

neutrino selection. A reasonable score cut of 0.8 is used to claim the presence of a particle

in an image. The network score distributions for 1L1P events on the Y plane are shown in

Fig. 8.90.
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Figure 8.90: PID score distributions from the Multi-PID network for five particle types for

1e1P (left) and 1µ1P (right).

For 1e1P approximately 62% of events have an electron score above 0.8. The network

exhibits the best response for identifying proton particles against the four others. Pion,

muon, and gamma particles cluster below a score value of 0.2. For 1µ1P the network

exhibits poor performance for identifying muon type particles as only 42% of events lie above

a score value of 0.8. Studies have shown that muon particle score is strongly correlated with

particle track length. As the muon decreases in length the network assigns lower scores and

the overall distribution resembles that of pion scores. This provides evidence for the fact

that muon and pion particles are challenging to distinguish using LArTPC images as they

have similar features. As in the case of 1e1P events, the network exhibits the best response
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on proton particles.

Next the number of electron, muon, and proton particles in the interaction is varied

from 0 to 2 to study how well the network can identify electron and muon particles given

the event multiplicity. The mis-classification rate of the electron and muon with gamma

and pion respectively are studied. The results for varying electron and proton multiplicity

is shown in Table 8.4.

e > 0.8 γ > 0.8 e > γ

1e0P 0.65 0.22 0.77

1e1P 0.62 0.25 0.74

1e2P 0.61 0.24 0.72

2e0P 0.64 0.46 0.70

2e1P 0.86 0.29 0.84

2e2P 0.81 0.25 0.81

Table 8.4: Multi-PID network classification accuracy for low multiplicity electron neutrino

interactions for a given topology. Values reported represent the fraction of events.

The network is more likely to identify an event as having an electron particle if more

than one electron is present in the image as expected. If no protons are present at the

vertex two electrons are most confused with the gamma type particle with 46% of events

identifying the presence of a gamma above the score threshold. In general, the electron

score is larger than the gamma score in approximately 75% of low multiplicity events.

The results for muon and proton events in Table 8.5.

The muon has best classification when two muons alone are present in the image with

no proton present. The muon exhibits some mis-classification with the pion particle when

more than one muon is present in the image. In general, the muon score is larger than the

pion score for each type of low multiplicity event topology.
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µ > 0.8 π > 0.8 µ > π

1µ0P 0.59 0.06 0.79

1µ1P 0.42 0.17 0.65

1µ2P 0.43 0.25 0.54

2µ0P 0.86 0.42 0.79

2µ1P 0.76 0.42 0.65

2µ2P 0.69 0.46 0.46

Table 8.5: Multi-PID network classification accuracy for low multiplicity muon neutrino

interactions for a given topology. Values are reported represent the fraction of events.
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Chapter 9

Neutrino Event Selection

This chapter will describe the 1µ1P and 1e1P neutrino selections to reduce cosmic ray and

neutrino induced backgrounds for the LEE search. At this stage multiple vertices have

been found in the MicroBooNE event image. The distribution of reconstructed 1e1P events

as a function of reconstructed neutrino energy (quantity described in chapter) after image

based data reconstruction is shown in Fig. 9.1. Each candidate vertex represents a potential

neutrino interaction or background which must be classified to obtain a pure sample of 1L1P

events. Before selection is applied, cosmic ray backgrounds dominate the data sample. The

1µ1P and 1e1P selection procedures follow a separate multivariate approach to select the

most likely candidate vertex per event which represents the desired neutrino flavor. The

1µ1P selection applies a two log-likelihood scheme, a cosmic and neutrino discriminator,

to identify the best candidate vertex per event. The 1e1P selection pursues a machine

learning based classification scheme using a combination of Boosted Decision Tree (BDT)

and Support Vector Machine (SVM) algorithms. 1L1P reconstructed energy and kinematic

distributions are compared to the 5 × 1019 POT MicroBooNE Run 1 data set. The 1e1P

rate prediction is shown for 13.2× 1020 POT.
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Figure 9.1: The 1e1P stacked background prediction as a function of reconstructed neutrino

energy for estimating the 5 × 1019 POT open data set before selection as described in

Chapter 9. Black dots represents Run 1 detector data. The gray boxes represent MC

statistical uncertainty. The cosmic ray contamination (yellow and orange distributions) for

the 1e1P search is high. Selection is applied in this chapter to reduce cosmic and neutrino

induced backgrounds. Other distributions are described in the text. Data are shown in

linear scale (left) and logarithmic scale (right).

9.1 1µ1P Selection

9.1.1 Overview

An event selection based on the 3D tracking algorithm is developed to isolate 1µ1P events

against background. The primary background are two track topologies reconstructed from

candidate vertices found on cosmic rays which feature two tracks emitted from a common

3D origin. A secondary background are from neutrino interactions which do not satisfy the

1µ1P criteria (e.g. multiple protons, or tracks which exit the active volume). The event

selection involves two components. The first component is a series of sequential rectangular

cuts on 3D vertex and track features. The second component is a log-likelihood based

discriminant which includes eight features to separate the 1µ1P topology against cosmic

ray and neutrino backgrounds.

The selection is benchmarked on a Monte Carlo generated sample of BNB interactions
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equivalent to 6.6×1020 POT, referred to as the cocktail sample. The cocktail sample contains

events with a GENIE simulated neutrino interaction (version 2.12.2, MCC8 era) overlaid

with externally unbiased data cosmic ray events. The cosmic ray data overlay provides

real cosmic ray data from beam off detector data taking and includes many detector effects

not modelled in simulation such as some classes of wire noise. The overlay sample features

real TPC signal formation which effects the topological shape of charge depositions in the

image. Additionally, the cosmic ray background rate and distribution on the detector edges

is better estimated. The event rate prediction is compared to the 5× 1019 POT data set in

reconstructed neutrino energy and kinematic variables to asses the Data-MC agreement.

The dominant background to the 1µ1P selection are cosmic rays reconstructed in events

which do not contain a neutrino interaction. The second most prevalent background involves

events where one of the outgoing particles fails to be reconstructed such as topologies with

additional protons or charged pions.

9.1.2 Pre-cuts

The event selection performs a series of rectangular cuts on vertex and track reconstructed

features to reduce the cosmic ray background before likelihood selection and are described

below.

Fiducial Volume

The reconstructed vertex location, (x, y, z), is required to be located inside a 10 cm fidu-

cial volume (FV) defined as x ∈ [10, 246.25] cm, y ∈ [−106.5, 106.5] cm, and z ∈ [10, 1026.8]

cm. The FV cut removes candidate vertices reconstructed close to the edge of the detector

where one particle is likely to exit and feature information about the track may be incom-

plete.

Two Track Requirements

Exactly two tracks of length larger than 5 centimeter must be reconstructed at the

candidate vertex point. The 1µ1P signal definition is a two pronged topology with energy

threshold set such that both the proton and muon are larger than 5 cm in length. This
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analysis cut explicitly removes charged current interactions where additional protons or

pions exit the vertex.

Both tracks must be fully contained inside the active volume. Candidate vertices are

vetoed if at least one of the tracks end point approaches within 15 centimeters of the detector

boundary.

The muon and proton particle are identified using the average pixel intensity value of

each of the tracks as shown in distribution shown in Fig. 8.65. The track with the largest

average pixel intensity is labelled as the proton particle, and the smallest as the muon.

Positive Track Diagnostic

The tracking algorithm features an internal self diagnostic algorithm to categorize the

quality of the reconstructed track. This diagnostic is called the track “goodness”. The

goodness of a track takes into account the ability for the track to reach a suitable end point

by evaluating the quality of the TPC signal used to generate the track, whether the wave-

form is faint or interrupted, or the charge depositions being tracked are relatively straight.

Two good tracks are required to be reconstructed at the candidate vertex.

Quasi-Elastic Energy Consistency

The 1L1P topology consists primarily of CCQE events which have a kinematic correla-

tion between the emitted proton and lepton. Three estimates of the neutrino interaction

energy for CCQE events are,

Erange
ν = Ep + Eµ +Mµ +Mp − (Mn −B), (9.1)

EQEν [p] =
1

2

2(Mn −B) · Ep − ((Mn −B)2 +M2
p −Mµ)

(Mn −B)− Ep +
√

(E2
p −M2

p ) · cos θp
, (9.2)

EQEν [µ] =
1

2

2(Mn −B) · Eµ − ((Mn −B)2 +M2
µ −Mp)

(Mn −B)− Eµ +
√

(E2
µ −M2

µ) · cos θµ
, (9.3)

where Erange
ν , EQEν [p], EQEν [µ] are the range based energy, and the quasi-elastic energy

estimated from the proton and muon particles respectively. For each energy variable, the

kinetic energy of the proton Ep and the muon Eµ are estimated from the reconstructed

track length as described in Section 8.7.4. A 40 MeV effective nuclear binding energy, B, as
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well as the masses of the proton, Mp, muon, Mµ, and the neutron Mn. The reconstructed

angle of the proton and muon with respect to the beam, cos θp and cos θµ, are used.

The consistency between each estimated neutrino energy is used to isolate CCQE events

against cosmic and non-CCQE neutrino backgrounds. Three analysis variables are defined

by taking the difference between pairs of estimated reconstructed neutrino energy,

∆pµ = EQEν [p]− EQEν [µ], (9.4)

∆range−µ = EQEν [p]− Erange
ν , (9.5)

∆range−p = EQEν [p]− Erange
ν . (9.6)

A requirement on the sum squared of ∆s is,

∆2
pµ + ∆2

range−µ + ∆2
range−p < 1 GeV2. (9.7)

Transverse Momentum Variables

To exploit the nature of quasi-elastic scattering kinematics, the transverse kinematic

imbalance can be used as a discriminant by considering momentum conservation in the

transverse plane. Three single-transverse variables (STV) [5] are defined as,

δpT = ~pµT + ~ppT, (9.8)

δφT = cos−1

(
~pµT · ~p

p
T

pµTp
p
T

)
, (9.9)

δαT = cos−1

(
~pµT · ~δp

p
T

pµTδpT

)
, (9.10)

where δpT is the overall 3-momentum imbalance in the transverse plane and is generated

by nuclear effects, δφT is the angular difference between the final state particles if the

particles were back to back in the transverse plane, and δαT is defined by the direction of

the transverse momentum imbalance in relation to the axis defined by the muon. A diagram

of the STV are shown in Fig. 9.2. The distributions for both δpT and δφT are shown in

Fig. 9.3.
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Figure 9.2: Schematic of single-transverse kinematic imbalance [5].
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Figure 9.3: Transverse momentum variables δpT and δφT described in Section 9.1.2. Three

distributions are shown for 1µ1P events (blue), EXT-BNB events (green), and neutrino

backgrounds events (red). Black dashed line indicates the location of the cut value.

The 1µ1P events cluster around zero transverse momentum with small transverse angu-

lar deflection with some smearing due to nuclear effects present. A cut on δpT < 500 MeV

and δφT < 3π/8 is applied.

Four Momentum Transfer
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The magnitude of the four momentum transfer for the interaction is computed via,

Q2 = 2EQEν (Eµ − pµ cos θµ)−m2
µ, (9.11)

and is expected to be larger than 0 for pure CCQE scattering. The distribution of Q2 is

shown in Fig. 9.4 for a sample of 1µ1P events and the two primary backgrounds, EXT-BNB

and neutrino backgrounds. Due to final state interactions, and the presence of MEC events
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Figure 9.4: Four momentum transfer, Q2, distribution for 1µ1P events (blue), EXT-BNB

events (green), and neutrino background events (red). Black dashed line indicates the

location of the cut value.

in the 1µ1P topology, a small population of events is found below 0. Cosmic ray events

feature Q2 values below 0 as the two out going tracks do not represent neutrino interactions.

Shower Activity

Finally, two discriminants are formed by using the SSNet to detect the presence of

shower activity at the candidate vertex location. Two track clusters are expected in a 1µ1P

interaction. The candidate vertex is rejected if a track follows a clustered particle with

greater than 50% of its pixels tagged as shower like by the SSNet. This requirement reduces

the intrinsic νe background before applying the likelihood selection in the following section.

The second discriminant requires that there be no detached showers in a fixed region around

the candidate vertex. The observation of detached showers indicates the potential presence

of π0 activity and are rejected. At the present moment, the reconstruction chain is unable

to quantify energy associated with detached particles emitted from the vertex location.
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9.1.3 Likelihood Selection

A binned log-likelihood (LL) function is trained to select the candidate vertex per event

which best represents the 1µ1P interaction. A LL function is defined as,

LL(E) =
N∑

i

log

(
si
bi

)
, (9.12)

where E is a vector of N parameters, and si and bi are the corresponding probabilities for the

parameter Ei to signal or background respectively. The distributions of si and bi are discrete

probability density functions (PDFs) which are constructed from signal and background

populations. For a given vertex each parameter, Ei, of E is reconstructed. Each parameter

is look-ed up in the corresponding PDF and the ratio of the probability for the parameter

to be signal to background is computed. The ratio is analogous computing the bayes

factor for two competing hypothesis. The log probability is summed over N parameters

and the output, LL(E), quantifies the likelihood for the vertex to be signal as opposed

to background. The LL function returns a single score per reconstructed vertex which will

determine the likelihood of being a 1µ1P interaction versus a cosmic or neutrino background.

A cut on the LL output is used to further reduce cosmic and neutrino backgrounds. The

score is maximized to select the most likely 1µ1P interaction.

Two likelihood functions are trained to discriminate 1µ1P versus a cosmic ray, called

the Cosmic LL, and other neutrino backgrounds, called the Neutrino LL. The LL functions

are designed by considering three sample of events. First is a signal sample which consists

of well reconstructed 1µ1P events. Second is a cosmic background sample, represented by

EXT-BNB events which pass the pre-cuts defined in the previous section. Third is a neu-

trino background sample, consisting of candidate vertices which pass the pre-cuts defined

in the previous section and which have reconstructed vertices within 5 centimeters of the

true vertex. Eight parameters are used to train the LL functions and are described below.

dQ/dx Asymmetry:

A 1µ1p interaction vertex has one highly ionizing proton attached to a minimum ionizing

muon. This feature is quantified by taking the ratio of the average charge deposition per unit

length for the candidate muon and proton particle, referred to as η. For each reconstructed
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track, an average dQ/dx is computed over the full track length. The charge collection

efficiency varies spatially as described in Section 8.7.5 so the absolute magnitude of a proton

or muon’s dQ/dx may not be consistent at all points in the detector. To account for spatial

variation the asymmetry between the muon and proton dQ/dx is calculated as,

η =

(
dQ
dx

)
p
−
(
dQ
dx

)
µ(

dQ
dx

)
p

+
(
dQ
dx

)
µ

. (9.13)

The distribution of η is shown in Fig. 9.5.
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Figure 9.5: Charge deposition per unit length asymmetry, η, between the proton and muon

track. Three distributions are shown: 1µ1P (blue), EXT-BNB (green), and neutrino back-

ground (red).

As expected, the cosmic ray background events concentrate at lower values of η as the

associated particles are two muons. Some discrimination is observed against neutrino back-

grounds which may contain a charged pion.

Track Kinematics:

Track kinematic parameters are used to aid in identifying CCQE-like scattering. The

three single transverse variables, δpT, δφT, and δαT described in the previous section are

used as input into the likelihood. Additionally three kinematic parameters, as shown in

Fig. 9.6, characterize scattering in the longitudinal plane are quantified.

First is the 3D opening angle between the proton and muon particle. For CCQE scat-

tering a vee shape topology will be present. For cosmic ray backgrounds particles will be
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Figure 9.6: Track kinematic variables described in Section 9.1.3. Three distributions are

shown: 1µ1P (blue), EXT-BNB (green), and neutrino background (red)

emitted back to back or feature large, obtuse opening angles. Neutrino backgrounds with

multi-body final states are distinguished from 1µ1P events by featuring a larger fraction of

acute opening angles. The angular expectations for 1µ1P events are captured by computing

the sum of the track thetas, or angle with respect to the beam line, which should be forward

biased for beam induced events, and by computing the absolute difference in φ angle, which

should peak at π radians for two body events.

Bjorken x:

The final input into the log likelihood function is the Bjorken scaling factor computed

as,

x =
Q2

2MpMν
, (9.14)

where Q2 is the momentum transfer, Mp is the proton mass, and Mν = Erange
ν − Eµ.

The Bjorken scaling factor corresponds to the fraction of proton momentum carried by the

parton which takes part in an elastic scattering process. The scaling factor for the three
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samples is shown in Fig. 9.7. For CCQE scattering the Bjorken scaling factor has a value of
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Figure 9.7: Bjorken scaling factor x for three samples: 1µ1P (blue), EXT-BNB (green), and

neutrino background (red).

one (completely elastic) as the squared momentum transfer matches the twice product of

the proton mass and energy difference between the neutrino and the kinetic energy of the

muon. A bias is observed due to reconstruction effects.

The two log likelihood functions are trained and independently evaluated on a sample

of signal and background events and are shown in Fig. 9.8. The Cosmic LL distribution
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Figure 9.8: Log-likelihood distributions for discriminating 1µ1P events against cosmic rays

(left) and neutrino backgrounds (right). The black dashed line represent the LL cut value

to categorize a signal versus background.

shows good separation between signal and background. A rectangular cut value of −3 is

placed on the Cosmic LL to distinguish signal. The distribution of Neutrino LL exhibits



CHAPTER 9. NEUTRINO EVENT SELECTION 157

weaker discrimination where a score cut of 0 is applied. The candidate neutrino vertex with

the highest Cosmic LL score above threshold is considered the 1µ1P interaction.

The efficiency of the Pre-cuts and the LL procedure is shown as a function of true

neutrino energy in Fig. 9.9. The resulting selection is approximately 18% efficient and 63%

pure of 1µ1P events after both reconstruction and final selection is applied.

200 400 600 800 1000 1200 1400
True Neutrino Energy [MeV]

0.0

0.1

0.2

0.3

0.4

0.5

Ef
fi

ci
en

cy

1 1P in AV

Figure 9.9: 1µ1P selection efficiency as a function of true neutrino energy for interactions

located in the active volume. A downward trend in efficiency is observed above 800 MeV

as muons reach large enough energy to exit the detector. A maximum efficiency of approx-

imately 20% is achieved in the sub 600 MeV region.

The efficiency of the rectangular cuts in the precut stage is shown in Table 9.1. The

global efficiency for finding a 1µ1P vertex is approximately 60% and is described in Sec-

tion 8.6.6. After track reconstruction, and applying the rectangular and LL cuts the ef-

ficiency drops to 18%. The background rejection capability for EXT-BNB and neutrino

background events is 99.97% and 98.7% respectively. The dominant backgrounds are neu-

trino induced topologies which feature a charged pion or additional protons above 60 MeV

which fail to be reconstructed. A breakdown of the various backgrounds are described in

the following section.

9.1.4 Data-MC Comparison

The 1µ1P selection is applied to the MicroBooNE Run 1 dataset, equivalent to 4 × 1019

POT after data quality cuts have been applied. Two samples are used to estimate the
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Efficiency [%]

1µ1P EXT-BNB Neutrino Bkg.

Fiducial Volume,

Two Track,

& Positive Track Diagnostic

26 2.9 5.0

Quasi-Elastic Energy

Consistency
22 0.6 3.1

Transverse Momentum Variables,

& Four Momentum Transfer
21 0.3 2.1

Shower Activity 20 0.2 1.8

Likelihood Selection 18 0.03 1.3

Table 9.1: 1µ1P selection efficiency for stages of cuts described in Section 9.1.3

.

rate of neutrino and cosmic ray backgrounds. The cocktail neutrino sample quantifies the

neutrino content of the selected sample and represents the events where neutrinos interact

in the beam spill window. A sample of cosmic rays from externally triggered BNB events

represents the event rate when the neutrino does not interact in the detector. The cosmic

and neutrino likelihood functions absolutely normalized to 4×1019 POT, then subsequently

normalized by area are shown in Fig. 9.10.

Post pre-cut selection, both likelihoods show good agreement between data (black dots)

and prediction across likelihood score value. Statistical errors only are shown per bin. The

predicted neutrino content of the selection is broken down in the CCQE, MEC, inclusive π±

and π0, and other charge current resonant events. In the low likelihood score the cosmic ray

contribution dominates. The selection becomes increasingly rich in CCQE content as the

likelihood is increased. No significant shape deviation is observed between the prediction

and data.

After the two likelihood selection is applied, the sample of 1µ1P candidates the becomes

CCQE enriched. The reconstructed angle with respect to the beam for the identified muon

and proton particles are shown in Fig. 9.11.
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1µ1P

1µ1P

Figure 9.10: Cosmic (top) and Neutrino (bottom) LL score distribution absolutely nor-

malized to 4 × 1019 POT for the 1µ1P selection. The data and prediction are shown with

black and gray dots respectively with statistical uncertainty only. The predicted likelihood

distributions are broken down by neutrino interaction type. The ratio of data to prediction

per bin is shown in the lower plot.

The proton is found to be primarily forward going with respect to the beam axis as

expected for CCQE scattering. The muon particle features a range of kinematic angle.

The sample is most pure with respect to cosmic ray events when the muon is forward

going (above cos θµ > 0) as cosmic tracks do not feature two forward going particles. The

cosmic contribution is the highest when the angle with respect to the beam is perpendicular

indicating a downward going muon as expected. No significant shape deviation is observed

between data and prediction in any of the reconstructed kinematic variables for the outgoing
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1µ1P

1µ1P

Figure 9.11: Proton (top) and Muon (bottom) angle with respect to the beam absolutely

normalized to 4 × 1019 POT for the 1µ1P selection. The data and prediction are shown

with black and gray dots respectively with statistical uncertainty only. The predicted cos θ

distributions are broken down by neutrino interaction type. The ratio of data to prediction

per bin is shown in the lower plot.

proton and muon.

The reconstructed neutrino energy spectrum using the range based formula described

in the previous section is shown in Fig. 9.12.

The sample is enriched in CCQE above 600 MeV in reconstructed neutrino energy as

the proton and muon particles can be optimally reconstructed. A total of 178 events are

predicted while 163 are observed in data. The number of reconstructed muon neutrino

events is sufficient at this number of POT to be used as a contraint of electron neutrino
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1µ1P

Figure 9.12: Reconstructed neutrino energy from the range based formula absolutely nor-

malized to 4 × 1019 POT for the 1µ1P selection. The data and prediction are shown with

black and gray dots respectively with statistical uncertainty only. The predicted range

based energy distribution is broken down by neutrino interaction type. The ratio of data

to prediction per bin is shown in the lower plot.

systematic uncertainty.

To quantify the overall agreement between data and prediction, a shape only chi-square

is computed for 23 reconstructed variables. The distribution of p-value is flat from 0.01 to

0.99 indicating good global agreement between data and prediction.

9.2 1e1P Selection

9.2.1 Overview

A selection is developed to identify 1e1P events against cosmic ray and neutrino back-

grounds. A three stage multivariate approach based on machine learning algorithms are

used for signal discrimination after a series of square cuts are applied to reduce cosmic ray

backgrounds. First, a BDT is trained to topologically identify electron particles using fea-

tures identified using the collection plane image. A BDT for cosmic discrimination is also

studied. Second, an SVM is developed using 3D tracker kinematics to isolate a two particle

topology. Finally, the Multi-PID network is leveraged via an SVM. The three scores are
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combined into a single discriminant for 1e1P selection.

The complexity of the 1e1P selection is high as identifying low energy electron neutrinos

presents unique challenges not present in the muon neutrino selection. Due to the BNB

flux, which is primarily of muon neutrino type, approximately 1 in 200 neutrino events is

expected to be an electron neutrino interaction. As such, the expected number of cosmic

ray only events is much larger. Topologically, low energy 1e1P events feature an electron

shower whose feature is stochastic in nature and varies as a function of energy which in-

creases the complexity of pattern recognition. Additionally, due to the expected size of

the proton particle particle ID using the dE/dx method must accurately characterize the

charge deposition over a restricted number of wires depending on the projection. Two

muon neutrino backgrounds are important in the 1e1p search. First, neutral current π0

interactions featuring a single proton and two photons can fake a 1e1P signal when a single

photon converts immediately at the vertex. The event rate for this topology is comparable

to 1e1P interactions. Finally, low energy muons from 1e1P interactions feature a short tra-

jectory and may generate radiation via delta rays which can topologically mimic an electron

particle.

The selection is benchmarked on a Monte Carlo generated sample of BNB interactions

equivalent to 6.6× 1020 POT to characterize the neutrino backgrounds. The same cocktail

sample is used as in Section 9.1. An intrinsic electron sample, corresponding to 1 × 1022

POT, features a GENIE generated neutrino interaction with data cosmic ray overlay and

is used to estimate the expected electron neutrino contribution to the MC prediction. The

event rate prediction is compared to the 5 × 1019 POT data set in reconstructed neutrino

energy and pattern recognition variables to asses the Data-MC agreement.

9.2.2 Topological BDT

A topological selection based on the reconstruction outlined in Section 8.8 is performed.

The reconstruction applies dedicated image based pattern recognition algorithms inside a

restricted crop around the candidate vertex. First a series of cosmic ray rejection cuts are

applied to candidate 1e1P vertices using the 2D cosmic ray tagging algorithm. Next, a cut

on the number of particles exiting the vertex is applied and the electron and proton are
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identified. Finally topological features are identified and a BDT is trained for 1e1P selection.

Cosmic Rejection

Three classes of cosmic ray interactions which appear as background to the 1e1P search

interact in some way with the candidate reconstructed vertex at the center of the crop. A

visual aid is shown in Fig. 9.13. To reject these backgrounds, a set of square cuts is applied

based on the proximity of tagged cosmic rays to the candidate vertex.

2

3

1

Tagged  
cosmic e-

p

4

Untagged  
cosmic  
shower

Figure 9.13: Four cosmic ray rejection precuts described in the text for topologically reject-

ing cosmic ray muons at the vertex location.

1. Through-going cosmic: Cosmic rays which travel through the image and approach

within 2 centimeters of the candidate vertex are rejected. The clustering algorithm

used to identify two prongs coming out of the vertex necessitates a clean search region.

A nearby cosmic may leave some debris near the candidate vertex and may be mis-

reconstructed.

2. Stopping cosmic: Cosmic rays which enter from the image edge may stop in the

center via a michel electron decay. Cosmic rays which have a reconstructed end point

within 6 cm of the candidate vertex are rejected. Additionally, the candidate vertex
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is rejected if either of the reconstructed particle end points is within 6 cm of a cosmic

ray end point. This cut is reversed to select michel electron events and described in

Section B.1.

3. Cosmic shower: High energy cosmic rays which enter into the image may produce

appreciable energy loss due to bremsstrahlung photons. These cosmic showers produce

a dense collection of charge and can cause a high degree of mis-reconstruction by the

track-shower vertexing algorithm. If the candidate vertex is within a region of dense

charge above a threshold, the vertex is rejected.

Particle ID

The candidate vertex is required to have exactly two particles reconstructed. The distri-

bution of number of reconstructed particles is shown in Fig. 9.14. This reduces the cosmic

ray and neutrino background by approximately 75% and 60% respectively while retaining

approximately 80% of 1e1P events. Approximately 20% of 1e1P events are reconstructed

with 3 particles and feature the presence of an additional proton below 60 MeV. These

events are produced with MEC interactions.

1e1p < 600 MeV
NuMu

Data
EXT-BNB

Figure 9.14: Number of particles reconstructed using the 1e1P algorithm for four samples.

The difference between the proton and electron topological feature is used to set the

particle ID for the candidate vertex. For each reconstructed particle a line hypothesis is

drawn on the image from the vertex to the particle end point. The fraction of the particle

cluster which is contained inside the line hypothesis is called the line fraction. The particle

with the largest line fraction is labelled as the proton particle, the other the electron. The
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distribution of line fraction for electron and proton particles is shown in Fig. 9.15.

Proton cluster

Line hypothesis

Proton
Electron

1e1p  
Enu < 600 MeV   

p-: 92% 
e-: 17%

Figure 9.15: Left : Distribution of line fraction for true electron and proton particles for sub

600 MeV 1e1P interactions. Right : Example estimation of the line fraction by drawing a

line of fixed thickness (cyan) for a proton cluster (red).

Approximately 85% of 1e1P interactions feature a proton particle which is more straight

than the corresponding electron. In some cases, the proton particle can scatter once, de-

viating from a straight line, or overlap with an additional low energy proton in the plane

projection. It is also possible for the electron particle to have no shower feature and propa-

gate with a straight line trajectory. Finally, a minimum calorimetric energy cut is applied

to both the electron and proton particle of 60 MeV. The calorimetric energy is estimated by

summing the charge of the collection plane particle cluster and is converted to MeV scale

as described in Section. 8.8.5.

Topological Features

Electron and proton particles have unique features in a LArTPC image which can be

used jointly to discriminate against backgrounds. Features identified using the 1e1P algo-

rithm from particle clusters are reconstructed on only the collection plane, due top poor

agreement between data and simulation for features reconstructed on induction plane due

to poor modelling of the signal shape. The selected features have been shown to have good

agreement between data and MC and have been used successfully in traditional cut and

likelihood based selection to isolate 1e1P events.

Eight features are used for proton particle identification. Discriminants are primarily
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used to distinguish proton particles against muons reconstructed on cosmic ray backgrounds.

Profiles of select distributions are shown.

• Line Fraction The line fraction variable encodes the line like feature exhibited by low

energy proton tracks. The distribution of line fraction is shown in Fig. 9.15. Particles

which are perfectly straight in the projection will have a line fraction of 1.0.

• Proton Kinematics For CCQE scattering the proton particle is expected to be for-

ward going in the beam direction. The distribution of proton direction cosine in the

X, Y, and Z are included as features for discrimination. To make the CCQE scatter-

ing requirement explicit, the fractional difference between the proton CCQE energy

the reconstructed visible energy of the interaction is computed. The distribution of

fractional difference is shown in Fig. 9.16. Finally, the 3D opening angle between the

proton and electron is used to provide the strength of the vee shape topology.

1e1p < 600 MeV

EXT - BNB

Figure 9.16: Distribution of fractional difference between the CCQE and visible energy of

the interaction for 1e1P events (blue) and EXT-BNB events (red). Magenta lines represent

the inner 68% of 1e1P events. 80% of EXT-BNB events lie outside the magenta region.

• Shower Fraction The likeliness that the selected identified proton particle is track

like is quantified by counting the fraction of particle pixels on the collection plane

which are shower like, called the shower fraction. A proton particle features a low

shower fraction as the proton cluster is primarily labelled as track type. The distribu-

tion for proton and electron shower fraction is shown in Fig. 9.17. The SSNet classifies
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protons in low energy 1e1P events primarily of track type approximately 99% of the

time, providing a useful discriminant against two track backgrounds.
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Figure 9.17: SSNet shower fraction for electron (top right) and proton (bottom right)

particles reconstructed in 1e1P, CC νµ, and EXT-BNB events. An example SSNet image

of a 1e1P interactions is shown on the left where an electron particle features an SSNet

shower fraction of 0.75.

• dE/dx The dE/dx for the proton particle calculated as the median value over the

full track length, as described in Section 8.8.6. The charge deposition per unit length

is a valuable physics motivated discriminant to distinguish between short and straight

proton particles from muons found on cosmic ray backgrounds.

• Proton Multi-PID Score. The Multi-PID network has been shown to perform well

at identifying proton particles in simulated vertices in liquid argon. The proton score

from the Multi-PID network is used a feature for background discrimination

The primary means to identify an electron particle are to identify average shower fea-

tures and quantify the topological shape of the electromagnetic cascade. A subset of the
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extracted shower features are described in Section 8.8.3. These features are used as discrim-

inants against low energy muon particles produced in BNB neutrino interactions. Shower

characteristics are estimated using tweleve features for electron particle identification.

• Triangle Parameters The presence of an electron shower feature can be can be

estimated via the ionization spread of the particle perpendicular to its propagation

direction. The 1e1P algorithm provides a triangle optimized to fit the electromagnetic

shower of the electron and is used to estimate the spread. The ratio of the shower

length to its width quantifies the spread and is shown in Fig. 9.18. The ratio is related

to the radiation length, and Moliere radius for electrons in liquid argon which are 14

cm and 9.042 cm respectively [6].

1e1p < 600 MeV

BNB NuMu

1e1p < 600 MeV

BNB NuMu

Figure 9.18: Left : Distribution of ratio of electron shower length to width for 1e1P events

(blue) and neutrino backgrounds events (red). Right : Distribution of empty area ratio for

electron particles for 1e1P events (blue) and neutrino background events (red).

• Empty Area Ratio To further capture the spread of an electron shower’s electro-

magnetic cascade the ratio of the amount of empty area enclosed by the convex hull

to the number of non-zero pixels inside is used, called the empty area ratio. The ratio

captures the degree to which the radiation spreads to cover an area. The ratio is high

if the cascade divides into smaller branches as it propagates outward and low if very

little radiation is emitted, such as if a muon features some delta radiation. The metric

is shown in Fig. 9.18.
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• Shower Structure The micro-structure of the shower is quantified using custom

topological algorithms to examine the fine details of the electromagnetic cascade.

The fraction of the shower cluster which deviates from a straight line measured after

the showering point is used remove the bias of the electron trunk which is typically

straight. The branching structure of the electron is quantified by counting the number

of edges and branches which compose the cascade. Branches are defined as points on

the cascade which form a “Y” shape where a single line of charge deposition breaks

into two or more prongs. The edges are the end points of branches which manage to

terminate off the central core of the shower. To further characterize the shower, the

number of defect points using a convex hull approximation for the shower is used to

further asses the branching structure. The distribution of branches and defects are

shown in Fig. 9.19. Finally, the shower fraction as described above is used to count

the number of pixels labelled as shower type by the SSNet.

1e1p < 600 MeV

BNB NuMu

1e1p < 600 MeV

BNB NuMu

Figure 9.19: Discriminators used to identify electron topologies described in the text. Left :

Distribution of number of branches for electron particles identified in 1e1P (blue) and

neutrino background (red) events. Right : Distribution of number of defect points larger

than 5 pixels.

• Detached Clusters A unique feature of electron particles above approximately 30

MeV is the emission of radiated photons. Radiative photons are clusters of charge

emitted in the direction of electromagnetic shower and are detached from the primary

electron shower. The number of detached clusters above 25 MeV is counted and used
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for electron versus low energy muon discrimination.

1e1p < 600 MeV

BNB NuMu

Figure 9.20: Number of identified clusters emitted in the electron direction above 25 MeV

for 1e1P (blue) and neutrino background (red) events.

Nineteen combined proton and electron features are used for classification of 1e1P events

against cosmic and neutrino backgrounds described in the following section.

BDT Selection and Efficiency

Two BDTs are trained to distinguish 1e1P interactions against cosmic ray (Cosmic

BDT) and neutrino (Neutrino BDT) backgrounds. A gradient boosted decision tree frame-

work called XGBoost [43] is used to train a decision tree ensemble which consists of a set

of classification trees. A decision tree is analogous to a series of sequential rectangular cuts

on features used to discriminate two populations such signal and background high energy

physics processes. Instead of identifying the relevant features and hand designing the selec-

tion value, a machine learned algorithm is used to build a collection of trees with varying

number of leafs, or subsequent cuts. Each leaf is analogous to an additional selection cut on

a subsequent feature to separate signal and background populations. During the training

process a new tree is added, called boosting, during each training iteration to correct the

errors mades by the previous sequence of trees. Each tree outputs a prediction score and

the result is summed across trees to determine the final classification. The result is a score

for being either part of a signal or background population.

The cosmic and neutrino BDTs are trained using 50 trees with a maximum depth of 3

leafs using a softmax objective. The signal sample is prepared from 5000 well reconstructed
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1e1P interactions with good truth matching between simulated and reconstructed particles.

Training and validation samples are randomly split 80%/20%. True neutrino energy range

is flat between 0 and 1 GeV with 70% of events being below 500 MeV to enrich the LEE

signal sample. Background samples are prepared as follows:

• Cosmic BDT: 5000 reconstructed cosmic ray events from the EXT-BNB sample

which pass the cosmic ray rejection cuts outlined in the previous section are used as

the background class.

• Neutrino BDT: 5000 well reconstructed BNB intrinsic νµ events of various interac-

tion channel which have a well reconstructed muon and proton particle.

The network is trained to approximately equivalent train and test accuracy. The results

of applying the networks on the respective background samples are shown in Fig. 9.21.

Using a score cut of 0.5, where a value larger than 0.5 is deemed “signal”, 85% of 1e1P
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Figure 9.21: Score distributions for Cosmic BDT (left) and Neutrino BDT (right) for signal

and background inputs.

and 93% of EXT-BNB testing events are classified correctly via the Cosmic BDT. For the

Neutrino BDT, 84% of 1e1P and 96% of neutrino backgrounds are classified as correct. To

determine the relative importance of each feature the number of times a feature appears in

the ensemble as a discriminant is shown in Fig. 9.22.

For discriminating proton particles the BDT favors the Multi-PID proton score, the

dE/dx, and the angle of the proton as strong features for separation from cosmic back-

grounds. The Neutrino BDT favors topological parameters using the particle length, size
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Figure 9.22: Importance of features used in the Cosmic (left) and Neutrino (right) BDTs.

Feature importance is a normalized measure of the fraction of algorithm composed of the

specified discriminant.

of defects present in the shower, and the number of pixels labelled as shower type by the

SSNet.

The Cosmic and Neutrino BDT are applied to events after cosmic ray rejection cuts

to estimate the score distribution for 5 × 1019 POT data. For each events the two BDTs

are applied. To prevent bias, the candidate vertex with the lowest flash matching score is

chosen per event. The absolutely normalized score distribution is shown in Fig. 9.23.
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Figure 9.23: Event rate prediction for Cosmic (right) and Neutrino (left) BDT for back-

grounds for the 1e1P selection described in the text. Run 1 data are shown as the black

dot.
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Five contributions to the event rate are shown, three neutrino induced and two cosmic

induced distributions. The event rate for neutrino induced interactions consists of well

reconstructed CC Nue (blue), neutral current (NC), and CC NuMu (red interactions). The

cosmic event rate is comprised of an “In Time” contribution (orange) which represents

events in time with the beam but no neutrino interaction present in the event, and a

“Cosmic” contribution which represents an event where a cosmic ray is selected in an

event with a neutrino. Good agreement is observed between data and prediction for both

BDTs. The neutrino enriched regions (low and high) of the Cosmic BDT approximately

25% disagreement is observed in the rate. At cut on the score distributions is optimized

by considering the ratio of signal (1e1P) to other backgrounds. The rate prediction as a

function of reconstructed energy for an optimized score cut of 0.70 on both the Cosmic and

Neutrino BDT is shown in Fig. 9.24.

1e1P

Figure 9.24: Event rate prediction as a function of reconstructed neutrino energy for an

optimized BDT score cut of 0.70 for the 1e1P selection. In data 6.0±2.4 events are observed

with a prediction of 7.3± 0.5(stat). Only statistical error bars are shown (gray dash).

After selection, two primary neutrino backgrounds dominate. First, neutral current π0

events which produce a proton and two photons in which one photon converts immediately

at the vertex. This topology can fake a 1e1P interaction. In this selection no algorithm is

used to identify the presence of a correlated second shower detached from the vertex point.

Second, low energy CC νµ events feature a short muon which produces delta radiation
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comparable in size to the muon length. These events visually mimic low energy showers as

they feature a branching structure after a straight trunk region. From a handscan of the

data events two 1e1P candidates are observed and shown in Fig. 9.25 and Fig. 9.26.
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Figure 9.25: Reconstructed 1e1P candidate interaction identified in the Run 1 data set.

The reconstructed energy is 166 MeV.
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Figure 9.26: Reconstructed 1e1P candidate interaction identified in the Run 1 data set.

The reconstructed energy is 1.1 GeV.

The efficiency of the BDT based selection is shown as a function of true neutrino energy

in Fig. 9.27 after applying the cosmic ray rejection cuts, and the two BDT classifiers. After

the final Neutrino BDT cut is applied, the 1e1P efficiency increases from approximately

10% in the lowest energy bin to 20% across the low energy excess region.
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Figure 9.27: 1e1P efficiency as a function of true neutrino energy for 3 analysis cuts in the

BDT based selection. The top line (green) is the cumulative vertex efficiency before selection

cuts and represents the nominal output of the vertexing algorithm with backgrounds shown

in Fig. 9.1. The black, maroon, and purple lines represent the cosmic rejection cuts, and

the Cosmic and Neutrino BDT cuts respectively. The stacked backgrounds compared to

5× 1019 POT data are shown in Fig. 9.24 after the Neutrino BDT cut.
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9.2.3 Kinematic & Multi-PID SVMs

To fully exploit the available feature space the 3D tracking and Multi-PID algorithms are

used for 1e1P selection using two support vector machines (SVM) algorithms. An SVM is

a supervised learning algorithm for classification and regression problems. In this analysis,

and SVM is trained to map a set of hand-designed features to a classification score as either

signal or background. The SVM is an optimized hyper plane in the number of features

dimension found by minimizing a hinge loss function which determines the optimal margin

between the hyper plane and the support vectors.

Kinematic SVM

The Kinematic SVM is a 1e1P vs. CC νµ classifier built from features extracted from

the 3D track reconstruction algo. While not specifically designed for reconstructing electron

showers, the tracking algorithm can provide useful information about an electron showers

trajectory. The tracker can identify the presence of a straight trunk region followed by a zig-

zagging trajectory as the tracker attempts to follow the pattern shower-like. As in the case

of constructing the Topological BDT as described in Section 9.2.2, a set precuts are applied

to reject obvious cosmic ray and muon neutrino background features. A cut is placed on

the CCQE energy consistency as described in Section 9.1 to ensure good agreement of the

proton and electron particle with CCQE kinematics. Additionally, two cuts are used to

reject charge and neutral current νµ interactions. First, a muon identification algorithm

detects the presence of a michel electron located at the end of a track. These events are

typically CC νµ events where a vertex is found at the true scattering point as well as

the michel decay point. Finally, an algorithm is used to identify the presence of a second

correlated shower with the neutrino vertex point. If a large (9 cm2) shower is identified with

a larger than 45 degrees opening angle with respect to the attached shower the candidate

vertex is vetoed.

Next, the SVM is trained using five features described in Section 9.1: ratio of the

transverse momentum to the total momentum, Bjorken x, 3D opening angle, the dQ/dx

asymmetry η, and the CCQE energy consistency cut. The result is shown in Fig. 9.28.

Separation is observed between 1e1P and νµ interactions. A score cut of 0.5 is used to de-
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Figure 9.28: Kinematic SVM classifier score applied to 1e1P (green) and νµ (blue) back-

ground events.

termine the classification as signal. Approximately 81% of 1e1P and 35% of νµ interactions

are classified as signal.

Multi-PID SVM

An SVM is trained using the output of the Multi-PID network to distinguish 1e1P events

against νµ backgrounds. Three features are used to distinguish the presence of a proton,

muon, and shower type particle. A shower type particle is identified in the interaction by

taking the max score between the electron and photon score. Good agreement is observed

in rate and shape for applying the Multi-PID network to predict the Run 1 data set. The

results are shown in Fig. 9.29

The result of training the Multi-PID SVM as applied to a sample of 1e1P and νµ

background events is shown in Fig. 9.30. Separation is observed between 1e1P and νµ inter-

actions. A score cut of 0.5 is used to determine the classification as signal. Approximately

93% of 1e1P and 7% of νµ interactions are classified as signal.
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Figure 9.29: Proton (upper left), muon (upper right), and electron (lower middle) score

distributions. The blue and green stacked histograms are the Cosmic and νµ backgrounds

respectively. The black dots are the score distributions for the Run 1 data set. Good

agreement is observed between data and prediction.

0.0 0.2 0.4 0.6 0.8 1.0
Multi-PID SVM Score

0.0

0.2

0.4

0.6

Ev
en

t 
Fr

ac
ti

on

1e1p

Figure 9.30: Multi-PID SVM classifier applied to 1e1P (green) and νµ (blue) events.
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9.2.4 Combined Selection

The output of the three machine learned algorithms is combined into a single score classifier

by taking an average. The classifier is shown in Fig. 9.31.

0.0 0.2 0.4 0.6 0.8 1.0
Mean Score

0.00

0.05

0.10

0.15

0.20

0.25

Ev
en

t 
Fr

ac
ti

on

1e1p

Figure 9.31: Combined classifier for 1e1P selection using the Topological BDT, the Kine-

matic SVM, and the Multi-PID SVM. Two distributions are shown: 1e1P (green) and νµ

(blue) interactions.

A cut is placed at a mean score value of 0.65 to remove all intrinsic νµ backgrounds.

The reconstructed energy is calculated by using the range based energy for the proton and

calorimetric energy of the electron particle. The energy distribution for intrinsic νe events

after the combined classifier is shown in Fig. 9.32 scaled to 13.2×1020 POT. Neither cosmic

or intrinsic νµ backgrounds are predicted in 13.2× 1020 POT data with an integrated 1e1P

efficiency of ∼ 5%.
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Figure 9.32: Reconstructed energy distribution for intrinsic νe events after the combined

classifier. MC statistical error bars are shown. No other neutrino or cosmic backgrounds

pass the combined selection.
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Chapter 10

Systematic Errors

This chapter describes the systematic errors associated with the LEE search. Propagation

of flux, cross section, and detector modelling systematic uncertainties are discussed using

the covariance matrix formalism. Finally, a demonstration of the νµ constraint of the νe

systematic uncertainties is presented.

10.1 Overview

Quantifying the significance of a low energy excess signal and assessing the sensitivity to

3+1 neutrino oscillations depends on the accuracy and precision for measuring the neu-

trino flavor and energy spectrum. In MicroBooNE, the cross section uncertainties in the

GENIE neutrino generator, the modelling of the beam flux, and the detector uncertainties

contribute to neutrino measurement uncertainties. The covariance matrix formalism is used

to propagate the systematic uncertainty from various sources. The covariance matrix itself

is a structure which characterizes the systematic shift in an observable, in this thesis the

reconstructed neutrino energy, which are correlated across bins. The covariance matrix is

constructed by varying a systematic parameter, quantifying the change in the observable

spectrum, and comparing the spectrum to the nominal, or central value. Specifically,

Mij =
1

n

n∑

k

(NCV
i −Nk

i )× (NCV
j −Nk

j ), (10.1)
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where Mij is the covariance matrix, n is the number of “universes” for which the system-

atic is sampled, and NCV
i and Nk

i are the nominal and kth variation at bin i. The total

uncertainty is then a combination of independent matrices for each systematic source,

MSys. = MGENIE +MFlux +MDetector. (10.2)

GENIE and flux uncertainties are estimated using the multisim method [44]. In this ap-

proach, MC events are generated with model parameters set to their central value. Then,

model parameters are drawn randomly for each parameter within their given uncertainty.

For each sampled parameter set, the event is assigned a weight based on the ratio of the flux

or cross section for the universe compared to the central value. Uncertainties on the model

parameters are propagated to weights for an event, which in the end are used to evaluate

the associated systematic uncertainties on the final event distributions using Equation 10.1.

A caveat to this procedure is that event re-weighting does not vary the kinematics of the

events which may be affected by certain cross section uncertainties. In this chapter, the

systematic uncertainties associated with detector modelling are not included as dedicated

detector variations are unavailable. A brief discussion is given in Section 10.4.

The procedure for constraining the νe systematic uncertainties using the νµ spectrum

is powerful technique to exploit flux and cross section correlations between the νe and νµ

energy bins. The constraint is detailed in Section 10.5 but referred to in Sections 10.2

and 10.3.

10.2 GENIE Cross Section

Neutrino interaction uncertainties are estimated using the event reweighing technique. A

table of tunable neutrino-generator input physics quantities are shown in Table. 10.1 and

include form factors for various types of neutrino-nucleus interactions, intra-nuclear hadron

transport parameters in the final state interactions (FSI) model, and many more. Only

some of the neutrino interaction uncertainties dominate. Weights for several different uni-

verses in which the varied parameter value is sampled from a gaussian distribution while all

other parameters are held at their central value. The number of universes per parameter

is between 50 and 1,000 depending on its importance. One shortcoming of the current ap-
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proach is that it is based on the default GENIE model for quasi-elastic interactions and an

empirical model for MEC interactions. The total constrained νe neutrino interaction uncer-

tainty is estimated to be approximately 10% and is dominated by FSI model uncertainties,

and CC resonant and NC model parameters which are not well constrained. QE related

cross section systematics, such as QE vector and axial mass, are well constrained and a

reduced to less than 1% for each variation. For νµ interactions, the neutrino interaction

uncertainties total approximately 25%.

10.3 BNB Flux

The BNB flux uncertainties are estimated for MicroBooNE using the beamline simulation

and techniques developed by the MiniBooNE collaboration [14]. The flux uncertainties

considered are,

• Hadron production of π+, π−, K+, K−, and K0
L.

• Horn current mis-calibration, and mis-modeling of horn current distribution, such as

the depth by which the current penetrates the horn conductor or so-called skin-effect.

• Secondary hadron interactions including π± and nucleon total, inelastic, and quasi-

elastic scattering cross-sections on aluminum and beryllium.

In addition, there is an overall 2% normalization uncertainty due to uncertainties in proton

delivery to the target. The multi-sim procedure is used by varying 13 flux parameters in

1,000 universes. The 1σ uncertainty estimates for these parameters are the same as in the

MiniBooNE paper, except for the K+ and π± production uncertainties, which have been

improved by more recent measurements. The K+ production uncertainty has been con-

strained using the SciBooNE measurement of p + Be → K+ at the BNB [16][45]. The π±

production uncertainties have been improved by using a better, more direct technique for

extracting uncertainties from the HARP data than the original Sanford–Wang parameteri-

zation. These updates are both reflected in more recent MiniBooNE papers, such as in [46].

The total constrained νe flux uncertainties are estimated to be approximately 3% and are

dominated by uncertainty associated with π+ production.
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GENIE Reweight Description

MaNCEL NC Elastic axial mass

EtaNCEL NC Elastic strange FF eta

MaCCQE, VecCCQEshape QE axial and vector mass

MaCCRES, MvCCRES CC resonance axial and vector mass

MaNCRES, MvNCRES NC resonance axial and vector mass

MaCOHpi, R0COHpi Coherent pion prod. axial mass, and nuclear size

RvpCC1pi, RvbarnCC1pi,

RvpNC1pi, RvbarnNC1pi
Non-res background, 1pi nu

RvnCC1pi, RvbarpCC1pi,

RvnNC1pi, RvbarpNC1pi
Non-res background, 1pi nubar

RvpCC2pi, RvbarnCC2pi,

RvpNC2pi, RvbarnNC2pi
Non-res background, 2pi nu

RvnCC2pi, RvbarpCC2pi,

RvnNC2pi, RvbarpNC2pi
Non-res background, 2pi nubar

BR1gamma, BR1eta
Resonance decays, radiative decay BR,

single eta BR

Theta Delta2Npi Resonance decays, angular distribution

NC NC cross section scaling

AhtBY, BhtBY DIS form factor, high-twist BY scaling

CV1uBY, CV2uBY DIS form factor, GRV98 PDF correction

DISNuclMod DIS nuclear model modification

AGKY xF1pi, AGKY pT1pi DIS AGKY hadronization, pion Feyman x, and pion pT

FormZone Hadron formation zone

CCQEPauliSupViaKF Fermi Gas Model, Pauli suppression kF

CCQEMomDistroFGtoSF Fermi Gas Model, CCQE vector form factor

MFP N, FrCEx N
Intranuke FSI model, nucleon mfp,

nucleon charge ex

FrElas N, FrInel N, FrAbs N,

FrPiProd N, MFP pi, FrCEx pi

Intranuke FSI model, nucleon elastic,

inelastic, absorbtion, nucleon π prod,

pi mfp, pi charge ex

FrElas pi, FrInel pi,

FrAbs pi, FrPiProd pi

Intranuke FSI model, pi elastic & inelastic,

pi absorption, pi π prod.

Table 10.1: GENIE neutrino model parameters considered for cross section systematics.
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10.4 Detector Systematics

Systematic uncertainties associated with detector modelling can not be evaluated using

the reweighing scheme as they directly affect the features present in the LArTPC image.

Detector systematics are assessed by independently varying simulation parameters to their

minimum and maximum 1σ extreme values and generating MC samples with the same neu-

trino interaction vertex. All variations use the same CV calibration. The full reconstruction

and analysis chain is used to recompute the final observable under the given variation. Then,

the variations are compared on an event by event basis to the CV to determine the change

in event rate per energy bin. Due to computing constraints, the contribution of detector

systematics are not considered in this thesis. Estimation of the effect of the detector sys-

tematics based on preliminary work is discussed here. Three detector variations produce

the largest effect on the selected νµ spectrum,

• Modifying the space charge effect model based on a data-driven scaling function. This

variation reduces the strength of the space charge effect compared to the CV, and has

an impact related to the fiducial volume requirement in both the 1e1P and 1µ1P

selections. The number of selected 1µ1P events is reduced by 15% after the variation

is applied.

• Scaling the longitudinal diffusion constant by ±1σ. Longitudinal diffusion is diffusion

of ionization electrons in the direction parallel to the TPC electric field and has been

measured in MicroBooNE. This effect is expected to smear the charge depositions

along the time direction as the initial electron ionization cloud expands as it travels

in the drift direction toward the wires. This effect is expected to reduce the number

of reconstructed 1µ1P vertices by approximately 40%.

• In the current simulation, charge induction on neighboring wires is only simulated

on the wire closest to the drifting charge. In this variation the model is replaced by

a model that includes longer-range charge induction which includes 10 neighboring

wires on each side. The main effect can be attributed to reducing the intensity of

charge observed on the induction planes and making particles appear with larger
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spread. This effect is expected to reduce the number of reconstructed 1µ1P vertices

by approximately 15%.

10.5 νµ Constraint

The selected νµ events are used to constrain the systematic uncertainty on the νe’s by

taking advantage of correlations between νµ and νe energy bins. The first component of

the constraint relies on the physics mechanism of pion decay which produces the flux of

muon and electron flavor neutrinos in the beam. Muon and electron neutrinos below 1 GeV

are produced primarily through π+ decay. First, muon neutrinos are produced via π+ →
µ+ + νµ. Then, antimuon decay produces electron neutrinos through µ+ → e+ + ν̄µ + νe.

Alternatively, the pion can decay directly to a positron and electron neutrino. The second

component of the constraint is due to the similarity between the low energy cross sections

between νµ and νe CCQE scattering, which are strongly correlated. The cross sections are

fundamentally similar for muon and electron neutrino scattering because they have a similar

Fermi motion, Pauli exclusion, and nuclear effects. The correlated flux and cross sections

of muon and electron neutrinos is naturally expressed via the covariance matrix, as the

correlation between energy bins are built into the off diagonal elements. The correlation

and fractional covariance matrices for the selected 1e1P and 1µ1P events are shown in

Fig. 10.1 for 20 reconstructed energy bins.

The x and y axis correspond to a reconstructed energy bin in the 1e1P and 1µ1P

selection. The 1e1P bins run from 0 to 7 with bin edges [200,300,400,500,600,700,800,1300]

MeV and are associated with the lower left block of the matrix. The 1µ1P bins run from

7 to 20 with bin edges from 200 MeV to 1500 MeV in increments of 100 MeV. In the off

diagonal components of the correlation matrix, strong correlations are observed between

νe and νµ energy bins. Reduced correlation is observed in the last three high energy νµ

reconstructed energy bins.

The correlation elements of the covariance matrix provides a constraint when calculating

a goodness of fit statistic χ2 for data versus MC when minimized for a model fit. Consider

the event differences between an oscillation model fit and the MC prediction for N side-by-
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Figure 10.1: Left : Correlation matrix between 1e1P and 1µ1P reconstructed energy bins

for flux and cross section systematic variations. Right : Fractional covariance matrix for the

same reconstructed energy binning.

side νe and νµ bins,

∆i = Nfit
i −NMC

i . (10.3)

Then the χ2 between fit and the prediction is then,

χ2 =
∑

i,j

∆iM
−1
ij ∆j , (10.4)

where M−1
ij is the inverse of the covariance matrix including statistical and systematic

uncertainties. Minimizing the χ2 assuming a no oscillation hypothesis, the value of Nfit
i and

associated uncertainty will be,

Nfit
i = NMC

i ±
√
Mii. (10.5)

A constraint can now be applied to the νµ fit values, Nfit
i , such that they are equal to the

observed event values within statistical errors, Ndata
i ±

√
Ndata
i , by adding a pull term to

the χ2 function. The function then becomes,

χ2 =
∑

i,j

∆iM
−1
ij ∆j +

∑

k

(Nfit
i −Ndata

i )2

Ndata
k

, (10.6)

Where i and j run over the sum of νe and νµ energy bins and k runs over the νµ bins only.
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Taking the derivative and solving the system of equations leads to,

Nfit
i =

∑

k

Bik


∑

j

C−1
kj N

MC
j


 , (10.7)

where,

B−1
ij =




M−1
ij for i, j ≤ nνe

M−1
ij +

δij
Ndata
i

for i, j ≥ nνe
(10.8)

C−1
ij =




M−1
ij for i, j ≤ nνe

M−1
ij +

δij
NMC
i

for i, j ≥ nνe
, (10.9)

which gives constrained errors on the effective events. The constrained uncertainties on the

νe bins are obtained by inverting the standard covariance matrix, M−1
ij , adding 1/Ndata

i to

the diagonal entries of the νµ block, then inverting the resulting matrix. Here we take the

number of observed “data” events to be the MC prediction, NMC
i . The result of applying

the constraint to the seven νe reconstructed energy bins is shown in Table 10.2.

Systematic-Only Error Total Error

νe bin Stat-Only Error Nominal Constrained Nominal Constrained

1 0.835 0.279 0.157 0.880 0.850

2 0.595 0.269 0.109 0.652 0.604

3 0.496 0.254 0.086 0.557 0.503

4 0.412 0.276 0.066 0.496 0.417

5 0.445 0.279 0.061 0.525 0.449

6 0.499 0.270 0.073 0.567 0.504

7 0.518 0.282 0.080 0.590 0.524

Table 10.2: Fractional uncertainties per νe energy bin before and after applying the con-

straint. Flux and cross section systematic uncertainties are constrained from approximately

25% to 10%.

The 13.2× 1020 POT event rate predictions after selection are shown in Fig. 10.2 with

statistical and systematic uncertainties. Only intrinsic νe background is observed after the
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1e1P selection and is dominated by statistical uncertainties due to the low event rate. MC

statistical uncertainties are not considered as the number of simulated events is in each bin

are larger than 10 times the predicted data size.

MicroBooNE Simulation MicroBooNE Simulation

Figure 10.2: Reconstructed energy spectrum scaled to 13.2× 1020 POT for the 1e1P (left)

and 1µ1P (right) selections including statistical and systematic errors.
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Chapter 11

Low Energy Excess Search

With the reconstruction, selection, and systematic uncertainties finalized, simulation is

used to estimate the sensitivity for performing a low energy excess search with the a 13.2×
1020 POT sample. A statistical analysis is performed to estimate the expected deviation

of the signal from the intrinsic νe background only hypothesis. This analysis predicts

MicroBooNE would observe a 3.8σ excess for the MiniBooNE electron-like LEE signal.

Next, the sensitivity to high ∆m2 oscillations via νe appearance is quantified under a 3

neutrino plus 1 sterile neutrino model given the predicted intrinsic νe rate. Finally, the

LEE spectrum obtained from CC intrinsic νe unfolding is fit to a 3+1 oscillation model and

the best fit point and associated confidence contours are extracted.

11.1 Significance of an LEE Signal

After the 1e1P selection is applied only intrinsic νe background is predicted at 13.2× 1020

POT using a 1.03×1022 MC POT equivalent. A simulated low energy excess signal sample

is used to estimate the predicted neutrino rate using an 2.8 × 1023 MC POT sample. In

this sample, the charge current intrinsic νe interactions are enhanced by the unfolded LEE

prediction from MiniBooNE as described in Chapter 6. The stacked event rate for the LEE

signal and the intrinsic νe background is shown in Fig. 11.1.

The LEE signal is concentrated in the less than 500 MeV region and is shown with sta-

tistical and constrained systematic uncertainties from flux and cross section contributions.
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MicroBooNE Simulation

Figure 11.1: Reconstructed energy spectrum for the predicted LEE signal (green) on the

intrinsic νe only (blue) background for 13.2× 1020 POT. Statistical and systematic uncer-

tainties are shown.

No uncertainties in the unfolding procedure are currently taken into account. To quantify

the amount by which the predicted LEE signal deviates from the intrinsic νe background a

hypothesis test is performed using a χ2 test statistic. Two hypothesis are given for the pre-

dicted 13.2×1020 POT reconstructed neutrino energy event rate. The null hypothesis, H0, is

the assumption that the spectrum is entirely due to intrinsic νe background. The alternative

hypothesis, H1, is that the rate is due to a combination of intrinsic νe background and an

electron like LEE signal contribution. A frequentist based approach is used to determine the

ability to reject the intrinsic νe only hypothesis given a median experiment where the LEE

is present. In this procedure both the background and signal plus background distributions

are sampled in independent “experiments” given their statistical and correlated systematic

uncertainties. Each experiment represents a potential measurement of the reconstructed

energy spectrum in MicroBooNE under each hypothesis. The experiments are drawn from

the covariance matrix using the Cholosky decomposition Monte Carlo technique. For each

hypothesis, H, 10 million experiments are drawn to form a probability density function

(PDF), g, of χ2 test statistics against the intrinsic background only assumption. The PDF

for each hypothesis is,

g(χ2|H) =
∑

i

(NH
i −Nbkg

i )M−1
ij (NH

i −Nbkg
i ), (11.1)

where NH is the MC experiment under either the background or background plus signal
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assumption, Nbkg is the intrinsic νe only background, and Mij is the covariance matrix of

the background. The result of the frequentist test is shown in Fig. 11.2.
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Figure 11.2: Frequentist study for rejecting the intrinsic νe only background hypothesis in

13.2× 1020 POT as described in Section 11.1. The red and blue distributions represent the

PDF of the χ2 test statistic under the background only and background plus LEE signal

respectively.

The red and blue distributions show the χ2 distribution for the background only as-

sumption (H0) and the background plus LEE signal assumption (H1) respectively. Each

distribution shows the probable amount by which the experiment distribution will deviate

from the intrinsic νe only background prediction given the associated uncertainties. In the

absence of the LEE signal a χ2/dof value of 25.8/20 is found for comparing background

fluctuations with the intrinsic only background. If an LEE signal were to be present, the me-

dian experiment would predict a χ2/dof value of 48/20. Under the intrinsic νe background

only assumption, this χ2 value has a probability of being found in 0.017% of experiments

which translates to a gaussian 3.8σ deviation from the expected mean. A lower bound on

the estimated signal significance is estimated using this technique by computing the +1σ

and +2σ LEE experiments which represent downward fluctuations of the LEE signal within

uncertainties. In 98% and 84% of LEE experiments a χ2 value is expected which repre-
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sents at least 0.5σ and 1.7σ deviations from the background only hypothesis. Due to large

statistical uncertainties the distribution of LEE test statistics extends beyond the available

PDF of the background only hypothesis in the −1σ direction. A large MC sample size is

required to simulate the extreme tails of the background only distribution.

11.2 Sensitivity to 3+1 Oscillations

The low energy excess prediction can be tested as an oscillation signal given the presence

of 1 sterile neutrino with a mass splitting of order 1eV2. The short baseline approximation,

which assumes ∆m2
solar = ∆m2

atmospheric = 0, is used to model an additional sterile state

neutrino mass splitting as two neutrino mixing. In the case of MicroBooNE, with L/E ∼
1 m/MeV, the sensitivities to the solar and atmospheric mass splittings are small. The

sensitivity to 3+1 oscillations is quantified via the νe appearance channel where intrinsic

νµ oscillate to additional νe. In this theory the νe appearance probability for νµ → νe

transitions is,

Pνµ→νe = 4|Ue4|2|Uµ4|2 sin2
(
1.27∆m2

41L/E
)
, (11.2)

where 4|Ue4|2|Uµ4|2 = sin2 2θeµ.

Given the predicted intrinsic νe background rate the sensitivity to sterile neutrino oscil-

lations is performed using the raster scan method. In this procedure, the ∆m2
41 vs. sin2 2θeµ

space is discretized into a grid and an oscillation spectrum is predicted by Equation 11.2 for

a given pair of oscillation parameters applied to a so called “full osc” sample. The full osc

sample is a fully transmuted sample of intrinsic νµ events which have been fully oscillated

to νe in the simulation. The neutrinos are produced with the νµ flux and interact as νe in

the detector via the νe cross section. The full osc sample is passed through the complete

reconstruction and 1e1P analysis chain. For a given true baseline, L, and true neutrino

energy, E, the sample is reweighed at each (∆m2
41, sin

2 2θeµ) point to give a predicted oscil-

lation spectrum on top of the intrinsic νe background. The oscillated spectrum is compared

with the intrinsic νe background at each point using a χ2 defined as,

χ2 =
∑

i

(Nosc
i −Nbkg

i )M−1
ij (Nosc

i −Nbkg
i ), (11.3)
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where Nosc
i and Nbkg

i are the oscillated and no-oscillations background spectrum respec-

tively. The correlation matrix including the full osc sample is shown in Fig. 11.3.
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Figure 11.3: Correlation matrix between four samples: intrinsic νe, the LEE signal, the

full osc sample, and the intrinsic νµ background. Strong correlations are observed between

energy bins in each sample.

The results of the raster scan are shown in Fig. 11.4. The 90% confidence level exclusion

curve is shown as the red line.

For points to the right of the red curve, the oscillated spectrum gives a χ2 value that

is large enough to be resolved given the intrinsic νe background rate within uncertainties.

For grid points to the left of the curve the oscillated spectrum cannot be resolved given

the intrinsic νe spectrum with uncertainty. In this region the amplitude and shape of the

oscillations are comparable to the intrinsic νe uncertainty. The raster scan line well covers

the LSND 99% allowed region shown in solid green for sin2 2θµe ∼ 10−3 and ∆m2 ∼1 eV2

oscillations. A global fit to neutrino oscillation data [47] is shown as the 3σ allowed region

in blue.
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Figure 11.4: One sided raster scan to test for sensitivity to ∆m2
41 oscillations as described

in the text.

The low energy excess signal prediction is fit to a 3+1 oscillation model using the com-

bined fit procedure developed by the MiniBooNE collaboration and implemented by the

author in SBNfit [48]. For a given data set the reconstructed neutrino energy distribution

for νe and νµ candidates are compared to their corresponding Monte Carlo distributions

for various signals across the oscillation space to find the set of parameters which mini-

mizes Equation 11.3. An iterative approach is taken such that the covariance matrix is first

calculated assuming there is no signal and is kept constant while varying the oscillation

parameters. Once the minimum has been found using the covariance matrix with no signal,

the matrix is recalculated with the oscillation spectrum at the best fit point. A new mini-

mization is then performed while keeping the updated covariance matrix fixed throughout.

This process is iterated until a convergence criterion is met. The result is a set of best

fit parameters that correspond to the minimum χ2 surface when the covariance matrix is

fixed at the best fit parameters themselves. The result of the oscillations fit to the LEE

spectrum is shown as the red star in Fig. 11.5 where the fit converged in 3 iterations to the
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best fit point of (∆m2
41, sin

2 2θeµ) = (0.063, 0.794) with a χ2 of 5.06 assuming two degrees

of freedom.
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Figure 11.5: Oscillations fit for νe appearance applied to the LEE signal as described in the

text. The best fit point is shown as the red star. Various confidence levels are shown using

the ∆χ2 prescription. The allowed regions can be compared to the MiniBooNE result in

Fig. 5.5

The allowed contours at the best fit point are calculated using the ∆χ2 prescription.

Points enclosed at each region represent the set of oscillation parameters which are within

the given confidence, or ∆χ2, of the best fit point given two degrees of freedom throughout

the space. Frequentist studies following the Feldman-Cousins approach [49] have been

shown that the ∆χ2 distribution across the oscillation parameter space varies from 1 degree

of freedom to 5.5 degree of freedom. No significant change in the best fit point location nor

the structure of the confidence regions change when the degrees of freedom per grid point

is determined. The 90% allowed confidence region represents a ∆χ2 = 4.61 from the best

fit point and is effected by oscillation shape as closed islands are observed at high ∆m2
41.

For confidence regions of 99% and above, no closed contours are observed. The oscillation
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spectrum at the best fit point is shown in Fig. 11.6.
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Figure 11.6: The intrinsic νe background and low energy excess reconstructed energy pre-

diction (green) compared to the best fit νµ → νe oscillation spectrum (red).

The amplitude of oscillations at the best fit point are commensurate with the LEE signal

and intrinsic νe background, but some shape difference is observed. Better resolution of the

oscillation signal can be achieved with reduced statistical uncertainties.
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Chapter 12

Conclusions

This thesis presented a first of its kind reconstruction and analysis chain for identifying

CCQE-like muon and electron neutrinos in the MicroBooNE detector using image based

reconstruction techniques. A hybrid of hand designed and deep learning computer vision

algorithms were developed and applied to MicroBooNE data and simulation to estimate

CCQE efficiencies and backgrounds.

The MiniBooNE low energy 12.84 × 1020 POT CCQE data was unfolded to provide a

data driven prediction of the low energy excess in MicroBooNE for the first time. Under

a model of the low energy excess which is due to an enhancement of the νe charge current

rate, the excess is found to be concentrated below 800 MeV in true neutrino energy with

appreciable energy dependence. For the full MicroBooNE 13.2×1020 POT dataset, 654 low

energy excess events are predicted of which 192 events are expected to be topologically one

electron and one proton.

An image based reconstruction software was presented along with efficiencies at each

step for identifying CCQE topologies in large multi-wire LArTPC images. Algorithmic

techniques for 2D and 3D cosmic ray tracking and rejection within the event image reduced

the image complexity for neutrino search. Along with the in-time PMT flash, the detector

region where neutrino activity likely occurred was isolated to establish a region of interest.

A new deep learning algorithm was applied inside the region of interest for a per pixel

classification to address the challenging task of track and shower classification. Next, the

3D vertex of neutrino scattering for muon and electron type neutrinos provided an anchor
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for pattern recognition of the final state particles. Muon neutrino interactions were recon-

structed using a tracking algorithm based on stochastic search to identify the presence of

muon and proton particles. Electron neutrinos were reconstructed by extracting detailed

features of the outgoing electron’s ionization pattern.

A low energy CCQE-like neutrino selection was presented using likelihood and decision

tree based algorithms and compared to the Run 1 MicroBooNE dataset. The muon selection

combined 3D track features into two likelihoods for an integrated selection efficiency of 18%

with cosmic and neutrino background rejection capability of 99.97% and 98.7% respectively.

After selection, good agreement is observed between data and Monte Carlo features and

provides sufficient statistics for constraining the νe systematic uncertainties. The electron

selection featured a ensemble based machine learning approach combining support vector

machine and gradient boosted decision tree classifiers. Two support vector machine clas-

sifiers were developed based on a multi-particle identification convolutional neural network

and the 3D track features of proton and electron kinematics. A boosted decision tree classi-

fier was developed by identifying strong topological features of the outgoing electron shower

combined with a dE/dx estimation of the proton yielding a global 1e1P efficiency of 15%.

Two 1e1P candidate neutrinos were identified via handscan in the 5 × 1019 POT data set

given a 2.51 ± 0.25 event expectation. Combined, the classifiers achieved an intrinsic νe

only background for a low energy excess search with an intergrated efficiency of ∼ 5%.

The νµ and νe systematic uncertainties related to GENIE cross section and BNB flux

were characterized. Given the measured νµ spectrum at 13.2 × 1020 POT, the νe system-

atic uncertainties are constrained from approximately 25% to below 10%. The statistical

uncertainties predicted νe event rate are shown to dominate.

The significance of a MiniBooNE low energy excess signal is profiled by performing

a frequentist study of rejecting the intrinsic νe only background (null) hypothesis. The

median experiment given the presence of an electron-like MiniBooNE low energy excess

signal would indicate a 3.8σ deviation from the null hypothesis given statistical and sys-

tematic uncertainties. The intrinsic νe only background and LEE signal prediction binned

in reconstructed neutrino energy (see Fig. 11.1) is shown in Table 12.1.

In 2019 an updated MicroBooNE simulation will come online with the promise of im-
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Reco. Energy Bin [MeV] 200 300 400 500 600 700 800-1300

Intrinsic νe Background 1.43 2.82 4.06 5.89 5.04 4.01 3.72

Electron-like LEE Signal 3.69 6.27 3.92 1.19 0.33 0.06 0.04

Table 12.1: Reconstructed neutrino energy bin-by-bin event rate expectation for the intrinsic

νe background and electron-like LEE signal for 13.2×1020 POT corresponding to Fig. 11.1.

proved signal processing, noise removal, and with advanced detector effects simulation such

as the dynamic induced charge effect. The updated simulation with respect to the signal

processing is expected to have a major impact on the image quality of the two induction

planes. The current 1e1P analysis relies primarily on the collection plane for pattern recog-

nition. With this requirement relaxed in updated simulation, an expected gain in 1e1P

efficiency is expected while keeping the backgrounds low. Assuming the same 13.2×1020

POT dataset, the expected low energy excess significane with intrinsic νe only backgrounds

is shown in Table 12.2. An increase in ability to reject the intrinsic νe background hypothesis

increases with improved efficiency. Additionally a liquid argon based near detector, called

the Short Baseline Near Detector (SBND), will come online in 2020/2021 and will take

neutrino data in the same beam-line [50] as MicroBooNE which will help reduce systematic

uncertainties for a LEE or oscillations search.

Efficiency Median LEE Sig. +1σ Sig.

5% (nominal) 3.8σ 1.7σ

7.5% 4.5σ 2.2σ

10% 5.1σ 2.6σ

Table 12.2: Low energy excess signal significance for frequentist studies with statistical and

systematic errors included. The nominal significance of 3.8σ is shown at 5% 1e1P efficiency

as described in this thesis. An efficiency improvement of 50% and 100% over the nominal

result would improve the median LEE significance. The right most column shows the 1σ

downward fluctuation of the LEE significance.

Finally, the sensitivity to 3 + 1 sterile oscillations was also presented by performing a

raster scan in the high ∆m2 and sin2 2θeµ space. The majority of the LSND allowed region
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is covered given muon to electron neutrino flavor transitions. The simulated electron-like

LEE signal (shown in Fig. 11.1) is fit to 3 + 1 oscillations and found to have a best fit

point of (∆m2
41, sin

2 2θeµ) = (0.063, 0.794). The 90% confidence allowed region is largely

consistent with interpreting the MicroBooNE LEE as > 0.1 eV2 oscillations.

This thesis explored MicroBooNE’s sensitivity to an electron-like low energy excess

signal using a custom end-to-end reconstruction and analysis chain. Other groups in the

MicroBooNE collaboration are exploring the photon-like nature of the LEE interpreted as

an excess of neutral current ∆ production followed by ∆ radiative decay on argon [51] using

the Pandora-based reconstruction approach. Statistical analysis shows that MicroBooNE

will have an average of 1.87σ excess for a photon-like MiniBooNE LEE signal with 6.6×1020

POT. Both the electron and photon based searches in MicroBooNE have plans for processing

the full 13.2× 1020 POT dataset to determine the nature of the MiniBooNE LEE.
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Appendix A

Department of Energy Office of

Science Highlight

The SSNet paper was featured on the Department of Energy Office of Science Highlights

webpage in January 2019 and is reproduced below. The paper has been accepted for pub-

lication in the Physical Review D with preprint available at [8].
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Image courtesy of Fermilab

This event display shows the result of a muon
neutrino candidate interacting inside the
MicroBooNE detector at Fermilab. The cyan
shows the energy deposited in electromagnetic
shower-like topologies. The yellow shows
energy deposited in other line-like topologies.
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MicroBooNE, Machine Learning, and Liquid Argon
The MicroBooNE experiment demonstrates the use of machine learning
to interpret images made by a liquid-argon particle detector.
The Science

Decades ago, scientists studying tracks created by
subatomic particles as they traveled through a detector
identified the types of particles manually. The use of
machine learning to interpret the image data is a
technological leap forward. Now, the MicroBooNE
neutrino experiment developed a type of machine
learning algorithm—a convolutional neural network. The
algorithm converts data from the tracks into information
about the particles that generated them.

The Impact

The MicroBooNE team showed that its new machine-
learning algorithm performs exceedingly well. It
interprets simulated data and real data similarly. This
algorithm is a valuable development for current and
future neutrino experiments that use liquid-argon
detector technology. It will help scientists learn about the
properties of the neutrino and the fundamental laws of
nature.

Summary

Researchers on the MicroBooNE neutrino experiment at Fermilab designed a type of machine learning
algorithm, convolutional neural networks, to identify subatomic particles that interact in the MicroBooNE
detector. The neural network sorted individual pixels coming from images made by a liquid-argon time
projection chamber. The neural network, called U-ResNet, distinguished between two types of pixels: those
that were a part of a track-like particle trajectory and those that were a part of a shower-like particle trajectory.

Track-like trajectories, made by particles such as a muon or proton, consist of a line with small curvature.
Shower-like trajectories, produced by particles such as an electron or photon, are more complex topological
features with many branching trajectories. This distinction is important because separating these types of
topologies can be difficult for traditional algorithms. Not only that, shower-like shapes are produced when
electrons and photons interact in the detector, and these two particles are often an important signal or
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background in physics analyses.

The team demonstrated that U-ResNet not only performs well, but also works in a similar fashion when
presented with simulated data and real data. The latter is the first time this has been demonstrated for data
from a liquid-argon neutrino detector. Convolutional neural networks are valuable to current and future
neutrino experiments that will use liquid-argon neutrino detectors. The more demonstrations there are that
these algorithms work on real detector data, the more confidence the community can have that convolutional
neural networks will help elucidate the properties of the neutrino and the fundamental laws of nature.
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Appendix B

Michel Electron Reconstruction

B.1 Michel Electron Sideband

B.1.1 Motivation

To validate the pixel to MeV calibration described in Section 8.8.5 the energy distribution

from Michel electron decays of cosmic ray muons is reconstructed. Along with the π0 invari-

ant mass distribution, the Michel distribution will serve as one of two calibration factors

to calibrate the energy scale and resolution for electron showers across the MiniBooNE

electron like low energy region. The Michel distribution provides a validation of the of the

electron energy in the lowest true neutrino energy bin for 1e1P candidates. Additionally,

the Michel sample helps build confidence in Data-MC agreement outside the signal region

(in this case very low energy) and can be used as a constraint in a combined fit for sterile

neutrino oscillations models.

In the following section a selection algorithm is described using a variation of the 1e1P

algorithm. Externally triggered data are used to confirm the shape of the energy spectrum

given the calibration. The Michel spectrum is then compared to the hit based algorithm

developed for the MicroBooNE michel electron analysis [52]. This provides a unique bench-

mark to compare the energy scale and calibration between pixelized and hit based calori-

metric schemes. Additionally, the expected dE/dx and angular profile are studied. The

energy smearing is estimated using a sample of MC michel electron decays. Finally, the
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spectrum is absolutely normalized and compared to the 5× 1019 POT data set.

B.1.2 Selection

Michel electrons are naturally vertexed in the reconstruction algorithm due to a vee shape

being formed between track (muon) and shower (electron) collections of pixels. The SSNet

algorithm has been shown to well separate electrons from muon produced in Michel decay

in MicroBooNE LArTPC data images [8]. Michel electrons are reconstructed using the

same cropped image scheme developed for the 1e1p analysis as described in Section 8.8.

In each plane, cosmic rays are tagged by the line following algorithm. The nearest cosmic

track which comes from the image boundary and stops closest to the vertex is tagged as the

candidate muon track. The pixels for this track are placed back into the image. The same

particle reconstruction algorithm is used to cluster particle pixels and match them across

planes. The candidate particle clusters are then passed to an analysis and selection stage.

Michel electron candidate selection is straight forward inside the cropped image. The

reconstruction algorithm has tagged a cosmic ray entering from the image boundary which

has stopped at the center of the image where the vertexing algorithm has found a 3D vertex

at the interface between track and shower pixels. To select candidate Michel electron events

a set of square cuts is applied.

• Two sets of particles must be identified and matched across two or more planes.

The candidate muon track is identified as the cluster which enters from the image

boundary, and stops at the vertex location. The other particle is identified as the

candidate Michel electron.

• The SSNet shower fraction for the electron cluster must be larger than 0.9. Due to

the michel electron size, few topological features are available.

• In cases where the muon track and michel electron are fully contained inside the image,

the muon track length must be larger than 30 centimeters. Additionally, the electron

length must be larger than 15 pixels, or 4.5 centimeters.

The selection does not utilize any pattern recognition of the dE/dx behavior near the

muon bragg peak to determine if particle physically came to a stop before a secondary
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particle is omitted as in [52]. Based on handscan of unbiased detector data, excellent purity

is observed to identifying Michel events. The reconstructed energy of the michel is estimated

from calorimetry and shown in Fig. B.1 using a sample of unbiased cosmic ray data.

0 10 20 30 40 50 60 70 80
Reconstructed Michel Energy [MeV]

0.00

0.05

0.10

0.15

0.20
Ev

en
t 

Fr
ac

ti
on

Pixel Based
Hit-Based

Figure B.1: Reconstructed Michel energy in MeV scale for the pixel based scheme (blue)

applied to externally triggered data as described in Section B.1. The energy spectrum from

the hit based identification scheme from is overlaid in grey.

The spectrum lies within the expected bounds of the expected Michel energy between

0 and approximately 60 MeV. From studying the lower energy bound on the Michel spec-

trum it can be seen that the nominal calibration offset allows the reconstructed electron

energy to fall below 0 MeV reconstructed energy by approximately 3 bins which represent a

total fractional event rate of approximately 5 percent. The offset must decrease by approx-

imately 10 MeV to shift the spectrum to positive values. The two reconstruction schemes

use different methods to calibrate the energy scale hence a difference in shape and peak

position is expected. The peak position of the image based analysis (blue) differs of the

publication (gray) by approximately 10 MeV. This shift can be accounted for by a shift of

the spectrum left and right. If the image based spectrum is shifted to the right 10 MeV,

the resulting spectrum will contain fractionally more events with higher Michel energy than

the publication. This effect could be attributed to the hit threshold used in the publica-

tion. In the image based reconstruction all charge larger than 10 pixel value emitted of the

particle trajectory are identified, potentially identifying charge clusters which are below the

hit reconstruction threshold. In addition, the image based scheme likely collect more of the
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radiative photons in the energy regime above the critical energy with advanced clustering

capability.

The dE/dx spectrum is calculated by averaging the truncated dQ/dx in the first 4

centimeters of the michel trajectory, applying the pixel to MeV calibration factor, and

applying the average spatial correction. The result is shown in Fig. B.2 for data cosmic ray

events.
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Figure B.2: Left : Reconstructed dE/dx distribution for selecting Michel events in external

data. The peak position lies in the expected MIP region. Right : Reconstructed opening

angle between the muon and michel particle.

The peak position of the distribution lies just above the expected 2.2 MeV/cm. The

angular distribution between the muon and electron particle is also shown in Fig. B.2.

In muon decay, michel electrons are emitted isotropically with a range of opening angle

possible. The measured angular profile features a similar shape as the vertexing efficiency

as a function of the neutrino daughter opening angle as shown in Fig. 8.51. The energy

smearing is estimated by comparing the reconstructed to the true energy for a sample of

simulated Michel events. The energy distributions are shown in Fig. B.3.

On average, the reconstructed energy is linearly correlated with the true energy with an

approximately 10 MeV bias observed.

B.1.3 Data-MC Comparison

The absolutely normalized event rate prediction for Michel production to the run 1 5×1019

POT data sample. The result is shown in Fig. B.4.
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Figure B.3: Left : Reconstructed Michel spectrum (blue) for the selection applied to simu-

lated michel decays. The red distribution shows the true michel energy deposited energy.

Right : Correlation between the reconstructed and true michel energy. The red dashed line

is shown at y = x to guide the eye.

4.2e19 POT

Figure B.4: Absolutely normalized Michel spectrum compared to the Run 1 data set. Good

agreement is observed between data and prediction.

Four distributions are used to predict the event rate in the Run 1 dataset. The blue

distribution represents the event rate for reconstructing neutrino interactions. The red

distribution represents the expected event rate for selecting a Michel from a neutrino induced

muon. The green distribution represents reconstructing a Michel electron on a cosmic
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ray muon. Finally, the orange distribution is the in-time reconstruction of cosmic ray

Michel electrons (equivalent to the EXT-BNB sample). The black data points are the BNB

triggered open dataset overlaid. The absolute normalization and shape agree between the

data and prediction.
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